
63

ScratchThat: Supporting Command-Agnostic Speech Repair in
Voice-Driven Assistants

JASON WU, Carnegie Mellon University, USA
KARAN AHUJA, Carnegie Mellon University, USA
RICHARD LI, Georgia Institute of Technology, USA
VICTOR CHEN, Georgia Institute of Technology, USA
JEFFREY BIGHAM, Carnegie Mellon University, USA

Speech interfaces have become an increasingly popular input method for smartphone-based virtual assistants, smart speakers,
and Internet of Things (IoT) devices. While they facilitate rapid and natural interaction in the form of voice commands, current
speech interfaces lack natural methods for command correction. We present ScratchThat, a method for supporting command-
agnostic speech repair in voice-driven assistants, suitable for enabling corrective functionality within third-party commands.
Unlike existing speech repair methods, ScratchThat is able to automatically infer query parameters and intelligently select
entities in a correction clause for editing. We conducted three evaluations to (1) elicit natural forms of speech repair in voice
commands, (2) compare the interaction speed and NASA TLX score of the system to existing voice-based correction methods,
and (3) assess the accuracy of the ScratchThat algorithm. Our results show that (1) speech repair for voice commands differ
from previous models for conversational speech repair, (2) methods for command correction based on speech repair are
significantly faster than other voice-based methods, and (3) the ScratchThat algorithm facilitates accurate command repair as
rated by humans (77% accuracy) and machines (0.94 BLEU score). Finally, we present several ScratchThat use cases, which
collectively demonstrate its utility across many applications.

CCS Concepts: • Human-centered computing → Sound-based input / output; Interaction techniques; Ubiquitous and
mobile devices.

Additional Key Words and Phrases: Conversational Agents, Speech Interfaces, Voice User Interfaces, Error Correction, Dialog
Interaction, Speech Repair

ACM Reference Format:
Jason Wu, Karan Ahuja, Richard Li, Victor Chen, and Jeffrey Bigham. 2019. ScratchThat: Supporting Command-Agnostic
Speech Repair in Voice-Driven Assistants. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 2, Article 63 (June 2019),
17 pages. https://doi.org/10.1145/3328934

1 INTRODUCTION
Speech interfaces, particularly ones used in voice-driven virtual assistants have become increasingly popular
as the accuracy of automatic speech recognition has improved [8]. Despite natural language being a rich and
intuitive form of interaction, modern smart assistants fail to deliver many of the affordances expected of natural
conversation [17, 32, 36]. One straightforward example of this shortcoming is speech interfaces do not allow

Authors’ addresses: Jason Wu, Carnegie Mellon University, USA, jsonwu@cmu.edu; Karan Ahuja, Carnegie Mellon University, USA,
kahuja@cs.cmu.edu; Richard Li, Georgia Institute of Technology, USA, lichard49@gatech.edu; Victor Chen, Georgia Institute of Technology,
USA, vchen36@gatech.edu; Jeffrey Bigham, Carnegie Mellon University, USA, jbigham@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2019/6-ART63 $15.00
https://doi.org/10.1145/3328934

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

https://doi.org/10.1145/3328934
https://doi.org/10.1145/3328934
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3328934&domain=pdf&date_stamp=2019-06-21

63:2 • J. Wu et al.

for natural speech repairs, i.e., changing some detail of a query after making it. While users can change queries
in text-based conversational interfaces by editing the text they entered, such functionality is unavailable via
time-dependent speech. Instead, users generally must cancel a prior command explicitly and then speak the
whole statement again, which is time-consuming and cumbersome. In this paper, we present ScratchThat, a
command-agnostic speech repair system for voice driven virtual assistants.

ScratchThat uses an algorithm that we introduce to find the most probable replacement for command parame-
ters, and then makes the replacement. For concreteness, consider the following user query:

“OK Google, order a pizza from Pizza Hut....actually make that Papa John’s."

Voice assistants, such as Google Assistant, will misinterpret the sentence or not take into account the correction
clause without explicit error handling programmed into each skill [1]. However, ScratchThat is able to pick up
the change in sentence structure and correctly recognize the query as ordering a pizza from Papa John’s. Overall,
the paper makes the following contributions in the area of voice-driven interfaces:

(1) We have developed a command-agnostic speech repair system. Current mechanisms for correction are
expected to be explicitly programmed into the app to handle specific cases [1]. In contrast, our approach
can be added as a layer on top of command logic and is not dependent on the expected query structure of a
certain command. We do not require any training data or examples of commands for training replacements.

(2) We showcase a more generalizable system. Current speech repair models make assumptions about the
placement of edit terms (such as “actually”, “I mean” or “instead”) [21–24, 37, 45], which we find to be
limiting. Our system is free from such assumptions and showcases performance on a diverse range of
commands. Moreover, unlike many previous approaches, our system can handle multiple out-of-order
repair clauses in a sentence.

(3) We ran a comprehensive suite of experiments that evaluated speed and usability across 4 repair methods,
encompassing 120 crowd workers and 10 live participants. Our results provide insights into speech repair
systems that generalize beyond our implementation.

2 RELATED WORK

2.1 Conversational Agents
While early research on conversational agents was mainly centered around sustaining believable conversation
[29, 41], the recent research focus has shifted towards creating functional interfaces [20, 33, 38] and conversational
modeling [18, 35, 40].

Advances in deep neural modeling techniques have allowed some relatively simple text-based conversational
agents (e.g., question answering agents and technology helpdesk agents) to be generated with end-to-end training
[35, 40]. These models can be further improved by providing contextual information such as user web history
[19], visual input [14], and affective cues [18, 43].
More complex conversational agents often define a framework for extending the agent’s functionality with

new commands [15]. Many consumer devices such as the Google Assistant, Amazon Alexa, and Apple’s Siri
include APIs for creating “skills”, which allow users to perform various supported actions, control connected
devices, and query information from the internet.
For such systems that potentially host thousands of “skills” with varying abilities and syntax, it is important

for the natural language understanding component to ensure their expected functionalities. In our paper, we take
this into consideration for ScratchThat.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:3

2.2 Usability of Voice Interfaces
Speech recognition has recently reached the stage of enabling fast interactions with computers [34]. On the other
hand, while smart voice assistants such as Google Assistant and Amazon Alexa have become popular in the
consumer market [8], the naturalness of interacting with them is often still restricted [17, 32].
Many of the challenges related to voice interfaces stem from their invisibility which can cause difficulty for

command discoverability and learnability [17, 30]. Often, voice interfaces support a large number of actions, but
it is infeasible or impossible to provide users with hints on the currently available commands and their syntax.

Recently, researchers have sought to address this by applying principles of adaptive interface design to voice
interfaces [17, 20, 26, 31], which allow interfaces to dynamically adjust for real-time behavior of users, often
taking into account user familiarity [31]. In conjunction with user data-driven systems that provide augmented
understanding with user-specific context [19, 33], voice interfaces can facilitate more natural interactions between
users and their devices.
In our paper, we seek to achieve this same goal by supporting a widely used speech phenomenon known as

speech repair. Allowing voice interfaces to correctly interpret natural speech disfluencies would allow them to
improve their general usability outside of user-specific contexts.

2.3 Approaches to Speech Repair
While voice assistants such as Google Assistant allow developers to implement error handling by manually
implementing explicit error states [1], speech repair detection is aimed at detecting and resolving such occurrences
in a more general case. For example, design guidelines for some conversational agents recommend that unique
error handling should be implemented for each turn, handling cases of missing or misinterpreted user input [1].
This approach allows designers to incorporate a large degree of customization for facilitating different types of
error recovery (e.g., no input, no match, and system errors), but it requires that additional “fallback handlers" (i.e.,
error states) be created for each actionable intent in the agent. On the other hand, a speech repair layer could
automatically resolve more general errors, removing the need for manual specification and handling.
The concept of speech repair has been widely studied in the context of speech disfluency theory [22, 37]. In

particular, earlier research has examined the structure of such phenomena as a way to identify discourse markers
and preprocess speech data for later analysis. While the terminologies used to describe the components of speech
repair differ, researchers tend to agree on the presence of several regions [21, 22, 37].

• Reparandum - the segment of speech that should be corrected
• Interruption point - user interrupts speech
• Editing terms (Interregnum) - signifies the end of the reparandum and beginning of the speech repair
• Alteration (Repair) - segment of speech containing corrected material for reparandum

Early detection mechanisms sought to label individual parts of utterances, also called sequence tagging. Heeman
and Allen proposed an algorithm to detect and fix speech repairs without syntatic or semantic knowledge of
the full utterance. It instead processed words one by one to dynamically create a repair pattern, using a set
of constraints for determining valid word correspondences. This was also combined with a Markov model for
determining part-of-speech and judging potential repairs from the pattern builder [21]. The two also proposed
integrating identification of discourse markers and speech repairs with speech recognition language models
[22]. In addition to sequence tagging, another technique made use of a noisy channel model to compare the
reparandum to the alteration as a means of detecting disfluency [45].

More recent data-driven approaches have used various neural models to detect and repair disfluencies [23, 24,
44]. Some of the advantages over previous techniques are lower latency, better output stability, and improved
handling of more complex repair structures. Using an Elman Recurrent Neural Network (RNN) proved to be
comparable to state-of-the-art methods, even without careful feature engineering [23]. Additionally, a long

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:4 • J. Wu et al.

short-term memory (LSTM) neural network can help make up for a noisy channel model’s inability to represent
complicated language structures [24]. Previous sequence labelling/tagging techniques also fail to effectively
capture long-distance dependencies as well as proper grammar in the utterance. However, treating disfluencies
as a sequence-to-sequence problem and taking a neural machine translation approach have become popular in
overcoming these challenges [13, 42].

While there have been many advances in disfluency detection and correction, these techniques have only been
evaluated and applied to speech transcription corpora like the Switchboard dataset. These datasets primarily
consist of conversational transcripts and do not closely resemble command-based interactions common with
virtual assistants. Speech repair, as a system and interaction, has not been applied nor assessed in speech interfaces
like voice assistants.

3 SCRATCHTHAT
ScratchThat supports query correction through corrective clauses, which serve to edit or correct portions of the
original input.

In ScratchThat, we assume the presence of two clauses. The first clause contains the user’s original query, and
the second clause is the corrective clause, which contains language to modify or correct a parameter in the query.
Depending on the type of interaction (Table 1), these parameters can be detected in different ways (Section 3.1).

This structure loosely follows the model of speech repair in spoken dialogue, where speakers begin a sentence
before they are sure what they want to say [22]; however, there are some notable differences.

• Unlike the traditional speech repair model, we do not expect speech repair structures to occur in the same
sentence (Section 2.3), only the presence of the the original query clause and the corrective clause. This
allows our system to be used in a variety of use-cases (Section 3.1).

• We ignore the possibility where the user performs a speech repair in the middle of a sentence and continues
on after the alteration has ended (e.g., Can you send Alice, I mean Bob, this picture?).

• ScratchThat supports alterations to multiple reparanda in the original query, where the order of the
alterations are not necessarily in the same order.

While some restrictions prevent the interaction from being as natural as spoken dialogue, we believe that this
model is more appropriate than the traditional model (Section 2.3) which makes a number of assumptions such
as fixed placement of edit terms and changed parameters. From our study results (Table 5), we find that such
assumptions would not hold true for a significant percentage of collected responses. Moreover, prompts with
multiple parameters could elicit non-immediate or out-of-order repairs. In addition, we seek to support flexible
speech interactions with a variety of devices with and without screens, which entail differing methods of usage
and feedback.

In the following sections, we provide more information on how our system ScratchThat can support different
use-cases and different steps of the ScratchThat algorithm. We build our implementation using freely available
NLP and machine learning software packages capable of running at latencies of under 5 seconds on a laptop
computer with a quad-core processor and 16 GB of RAM. In real-world deployment scenarios, the algorithm can
either be optimized to run on a phone using compressed models or be run as a cloud-based service. In the latter
case, the algorithm’s performance, specifically embedding inference, can be greatly improved using a graphics
processing unit (GPU) or specialized tensor processing unit (TPU) [25]. This would allow for near immediate
processing time and offload device computation to minimize battery impact.

3.1 Repair Interactions
Modern conversational agents often provide output that extends beyond pure text-only responses. Consumer
virtual assistants, such as the Google Assistant, allow developers to include multi-modal functionality [2] which

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:5

Fig. 1. Example applications of the ScratchThat system. (Left) A user interacts with a smart speaker. (Center) A user searches
for images on a smartphone. (Right) A dual-purpose speech agent is able to correctly intercept meeting details from a natural
conversation between two people.

Table 1. Characteristics of Voice Assistant Interactions

Type Description Assumptions Devices
Conversational Text or spoken dialog responses Screen not present Smart speakers

Turn-based interaction
Feedback each turn

Visual Responses presented with visual media Screen is present Smartphone assistants
Turn-based interaction
Immediate feedback

Passive Using third-party conversation as input Screen not present Varies
No direct interaction
No feedback

has implications on the supported conversational interactions and device hardware (Table 1). Below, we elaborate
on the integration and use-cases for conversational, visual, and passive interactions for voice assistants.

3.1.1 Conversational Components. Conversational components of voice assistant interactions are usually sup-
ported by turn-based speech which can serve to prompt or provide feedback to the user. ScratchThat can be
implemented as a layer on top of voice assistants that automatically pass resolved queries to underlying commands
without built-in support for error handling.

It is relatively simple to retrieve both the original query and correction clause from two separate turns. However,
due to the relatively long time required to use speech to present information, it is likely for the speech repair to
occur in the same turn as the original query (e.g., Can you send Alice this picture, I mean Bob?). In these scenarios,
a list of edit terms or a repair keyword can be used to segment the input into the query clause and corrective
clause.

3.1.2 Visual Components. Voice assistants on devices with screens enable multi-modal interactions incorporating
visual components. In addition to supporting different response types, voice assistant GUIs often provide other
features such as real-time transcription feedback and alternate ways of interacting with the assistant other than
speech.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:6 • J. Wu et al.

A major difference between visual and conversational components is the greater speed at which information
can presented. In addition to supporting conversation-based repairs, it is also feasible for visual assistants to
display a confirmation screen, which can quickly be confirmed or used to initiate a speech repair. This clear
separation between the original query and corrective clause allows users to be more flexible in constructing
natural repair phrases, as the segmentation would not depend on detecting the presence of specific edit terms or
keywords.

3.1.3 Passive Interactions. Outside the scope of common user-assistant interactions, it is possible to improve
passive speech interactions such as dual-purpose speech using speech repair.

Lyons et al. [28] demonstrated the possibility of leveraging patterns in everyday speech as hooks for automati-
cally recording important bits of information vocalized throughout the day. For example, it is common courtesy
to echo back a phone number as it is being given to you. An always-on microphone might be able to detect this
phenomenon and automatically create a contact card with the phone number.

This presents some challenges for our system due to the absence of feedback and the possible presence of repairs
in the middle of sentences, which would violate some of our assumptions. However, we believe ScratchThat can
still improve the accuracy of such systems by detecting and resolving speech repair phrases.

3.2 Parameter Identification
ScratchThat automatically identifies replaceable entities in the speech query for use as command parameters. We
employ an algorithm that does not require labelling of parameter slots or expected command arguments and
instead groups words together based on part-of-speech (POS). Because of this, ScratchThat can be used “out of
the box” with most virtual assistants or information retrieval commands.
This approach detects most common noun phrases but may not correctly identify certain named entities or

proper nouns. We accommodate this by augmenting the parameter identification with named entity recognition
(NER) models and a user-specific list of known entities (e.g., list of users’ songs, contacts).

3.2.1 Chunking. Chunking, also known as shallow parsing, involves grouping words in the input query into
higher order segments that represent different entities or actions. In particular, noun chunks can often be used to
fill subject and object positions in a sentence [7], and we use them as possible query parameters or replacement
candidates. While there are many methods to identify chunks through parsing grammars or machine learning,
we employ a simple algorithm which groups words by their POS tags using regular expressions.

The POS tags are computed using the Stanford CoreNLP POS tagger [39], which outputs the Penn Treebank tag
set. The CoreNLP POS tagger is trained mostly on articles, documents, and other declarative, written language
and is not necessarily optimal for tagging conversational speech commands (Figure 2). However, we find its
performance is sufficient for the purpose of noun phrase extraction.

3.2.2 Named Entities. ScratchThat can use a combination of automatic named entity recognition and values
from a user-specific entity list to revise incorrectly chunked entities (e.g., a title such as Harry Potter and the
Sorcerer’s Stone would be chunked as two entities) and to detect additional entities (e.g., time descriptors). We
leverage the a pretrained NER tagger available in the Stanford CoreNLP library [16] to generate tags for a variety
of entities (Location, Person, Organization, Money, Percent, Date, Time). This model was trained on the MUC-7
dataset, corpus of news articles from the 1990s [12].
While the NER model detects time descriptors well and can recognize most common names, it is unable to

detect titles of recently released media or some names. In real-world use cases, the accuracy of NER for some
voice assistants can be further improved by requesting relevant data for certain usage scenarios. For example, the
names on a user’s contact list can aid a smartphone-based virtual assistant in detecting the message recipient

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:7

Fig. 2. Entity extraction from example input by chunking noun phrases. Part of speech labelling is not entirely correct, due
to the loose nature of conversational grammar. However, all relevant entities (true positives) are detected.

parameter of an email application. Similarly, a list of songs in a user’s media library can be used with a smart
speaker’s music playing functionality.

3.3 Query Correction
Our algorithm assumes that the original mistaken entity will be semantically and syntactically similar to the
intended replacement. While the assumption may not always hold, such as in the case where the speech-to-text
(STT) provides a similar-sounding or homophonic mistranscription, we believe these assumptions are generally
valid for the reasons below.

• The language model in modern STTminimizes the probability that mistransciptions due to similar-sounding
but semantically different words will occur.

• We investigate primarily cases of query correction where the overall intent of the action remains unchanged,
but the user changes his/her mind about one or more parameters. Since each parameter represents a certain
type of entity (e.g., date, name, place, food), valid entities for each slot are generally more semantically
similar than invalid entities.

• The overall syntactic structure of the query reveals parameters’ relations to other entities and actions. Valid
inputs to a parameter will generally have similar relationships to the rest of the query because the overall
outcome and expected arguments of the command stay constant.

Thus, we design a similarity measure that is able to determine the likelihood that a given replacement candidate
is valid for the input and correction pair. This similarity measure is scored using both the semantic, similaritysem ,
and syntactic similarity, similaritysyn , of the inputs.

We use these similarity scores to construct a cost function that is used to find the optimal matching between
entities in the corrective clause and parameters in the query.

3.3.1 Semantic Similarity. We define a semantic similarity measure, similaritysem that compares the similarity
of two entity inputs by comparing their text embeddings. Text embeddings encode text input into vector
representations that are useful for natural language processing tasks such as classification and semantic similarity.
For the semantic similarity task, we use the Universal Sentence Encoder [9], for which there is a pretrained

model readily available online. We select this encoder due to its ability to accept and generate representations for
entity chunks, which are often greater than word length.
The semantic similarity measure is computed with the commonly used cosine similarity metric for natural

language processing tasks. Due to the Universal Sentence Encoder’s ability to accept greater-than-word length
text, it is possible to compute the embedding similarity between both the entities themselves or candidate queries
(modified versions of the input query where some of the original entities are replaced with correction candidates).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:8 • J. Wu et al.

Fig. 3. Semantic similarity scores when comparing entity similarity and sentence similarity for the input query “Order a drink
fromMcDonald’s” and corrective clause “actually make that a burger.” Entity similarity is computed as the similaritysem
between the entities themselves while sentence similarity is computed as the similaritysem between the original input query
and the input query with the entity “a drink” substituted for the replacement candidate.

While there is no limit on the length of text that the encoder can accept, longer text inputs lead to more “diluted”
embeddings, where it becomes more difficult to distinguish between candidate queries (Figure 3).

However, using the entity similarity to measure query similarity may cause an interesting problem, where the
corrective entities are mis-assigned due to strong associations between parameters of different types. Figure 3
shows the entity similarity and sentence similarity matrices of the input query “Order a drink from McDonald’s”
and the corrective clause “actually make that a burger.”
The entity similarity matrix shows that a burger has a stronger association with McDonald’s, which would

cause the resulting query to become “Order a drink from a burger.” This is due to the strong association between
McDonald’s and selling burgers, which overshadows the relationship between burgers and drinks as food items
that are able to be ordered from a restaurant.
On the other hand, the sentence similarity matrix, which embeds the entire candidate query, shows that the

entities a burger and a drink have a higher similarity score than a burger and McDonald’s. This would result in
the intended query “Order a burger from McDonald’s.”
Nevertheless, it is difficult to design an algorithm that is guaranteed to overcome the problem of extra

associations between two entities. This is in part due to the command-agnostic nature of ScratchThat, where no
knowledge of the command structure and expected arguments is needed. It is possible to provide knowledge
of parameter types, constraining the possible candidates and further decreasing the likelihood of incorrect
replacement. In the next section, we describe a syntactic similarity measure that resolves many cases where
entity confusion is possible, including the example described.

3.3.2 Syntactic Similarity. The syntactic similarity score, similaritysyn , compares entities’ relations to other
parts of the sentence. Given the command-agnostic nature of ScratchThat, where no information about command
structure or expected arguments are given, it is especially important to capture the sentence structure of the
query, as this can be used to infer entity type and correct errors.

To compute the syntactic similarity, we use the directed edges of a dependency tree to model entity relations.
The dependency tree is computed with the Stanford CoreNLP neural dependency parser [11], a transition-based
neural dependency parser that produces projective trees and POS tags.
Figure 4 shows the output of the CoreNLP dependency parser. Note that although the parser produced an

incorrect POS tagging for the clauses (Order is incorrectly tagged as a singular proper noun), the dependency
tree is correct. The dobj edge from Order to latte indicates a verb-direct object relationship between the two
words, correcting the POS tag.

The syntactic similarity of two entities is computed as the Jaccard similarity between the entities’ dependency
edges after replacement. The Jaccard similarity is a commonly used similarity measure for finite sets and is
defined as the size of the intersection divided by the size of the union. For each entity, we construct a set of
incoming and outgoing edges from words not in the entity itself.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:9

Figure 4 shows the syntax similarity score computed between two candidate replacements for the input query
“Order a latte from Dunkin Donuts” and correction clause “actually order a medium coffee.” It is interesting to note
that another replacement, “Order a latte from a medium coffee” would also result in perfect semantic similarity,
but achieves a lower semantic similarity score.
Thus, we show that the semantic similarity measure, similaritysem , and the syntactic similarity measure,

similaritysyn , complement each other and are both required for correctly evaluating replacement candidates.

3.3.3 Entity Matching. We formulate the final entity matching problem as a minimum cost assignment problem
between the set of entities in the original query, {e1o , e2o , . . . , eno }, and the set of entities in the corrective clause,
{e1c , e

2
c , . . . , e

n
c } (Figure 5).

cost = 1 − (α · similaritysem + (1 − α) · similaritysyn) (1)

The linear sum assignment optimizer included in SciPy, which implements the Hungarian algorithm [27], is
used to compute the optimal assignment. This assignment assumes every entity in the correction clause will be
matched to a target, but due to false positives in the chunking algorithm and the presence of irrelevant entities,
we introduce an additional thresholding step. The threshold ensures that a replacement is made only if the
replacement cost is less than an empirically set threshold (threshmax = 0.6).

4 EVALUATION

4.1 Correction Clause Elicitation
We created command templates (Table 2) from an easily-found online list of supported commands for the Alexa
virtual assistant [3]. Although we chose to evaluate Alexa-supported commands for our study, we intentionally
chose very common commands that have similar counterparts on other virtual assistants as well so that the
results from our studies can be more generalizable. Nevertheless, the scope of our studies is mostly limited to the
use-case of an Alexa Conversational Voice Assistant (Table 1).
In particular, we selected all productivity and information-retrieval commands that would be used in a

workplace scenario to more closely model continued, in-situ usage of a voice assistant in such a situation rather
than fragmented use across unrelated contexts. This was done so that the real-world use-case of the prompts
would more closely match pace of this study and the interaction comparison study, where users respond in quick
succession.

Fig. 4. Syntactic similarity score using dependency graph edges. This score is able to eliminate incorrectly identified entities
in the chunking phase by identifying syntactic incompatibility. An example of a good match and bad match are shown. In
this case, similaritysyn (a_latte, a_medium_coffee) = 1 and similaritysyn (Order, a_medium_coffee) = 0.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:10 • J. Wu et al.

Fig. 5. Entity matching and replacement formulated as a minimum cost assignment problem. Here, an example of the entity
matching is shown with multiple parameters and replacement candidates. Table represent costs between replacements, and
the assignment with the least cost is used to generate the output.

Table 2. Commands and Parameter Types

Commands Parameter Types
Financial Markets (3) Stock Ticker, Date
Travel Information (4) City, Country
Communication (3) Person Name
Calendar (4) Event, Date
Reminders (3) Date, Person Name
Clock (3) Time, Duration, Date

Table 3. Parameters Types and Examples

Parameter Types Examples
Stock Ticker GOOG
Date May 6th, next Tuesday
City London
Country Australia
Person Name Alice
Event the hackathon
Time 3:45 PM, noon
Duration 5 minutes, 1 hour 10 minutes

Table 3 shows command templates and parameter types used for generating prompts. Each parameter type
contained at least 10 different possible values meant to test a diverse set of representations. For example, the
Date parameter included both absolute (May 6th) and relative (next Tuesday, tomorrow) dates.
Using a prompt generator that randomly selects from the available command templates and parameters, we

generated two datasets, one for use with an online Amazon Mechanical Turk (MTurk) elicitation study and one
for later use with an interaction comparison user study. Each dataset contained a list of input queries, randomly
selected parameter modifications, and “ground truth” replacement queries. The MTurk dataset contained 40
prompts, each consisting of an initial query and correction. For the user study, we generated a separate dataset
consisting of 10 sets of 20 prompts to match our intended study design of asking 10 participants to engage in a
voice-assistant usage session of 20 prompts. Although we generated a new set of prompts to further increase the
diversity of the dataset, these prompts were generated using the same command templates (Table 2) and possible
parameters (Table 3) as the MTurk dataset and are directly comparable.

While the primary purpose of the elicitation study was to characterize natural forms of command correction
with regard to edit term placement, the MTurk study was also used to inform the design of ScratchThat and
construct a large dataset of query repair examples for offline evaluation of the repair algorithm. We created an
online survey that randomly chose 5 prompts from the MTurk question bank every time it was started. Each of
the 5 prompts included an input query and a parameter correction. Although the online survey was presented in
a text format due to limitations of the platform, survey-takers was instructed to enter phrases that they would

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:11

verbalize aloud. Furthermore, we asked participants to construct a repair phrase that they would use with a virtual
assistant that had human-level understanding of speech correction (i.e., “a virtual assistant that can understand
you as well as a human being could."). Our specific phrasing is aimed at producing repair phrases that naturally
occur in human conversations but roughly adhere to the constraints of virtual assistant queries (e.g., fits inside a
single turn, fewer occurrences of other speech disfluencies and filler words, etc...). The survey was posted on
Amazon’s Mechanical Turk platform as a masters-only task for 3 days and was completed 120 times, resulting in
600 responses. 27 responses were identified as incorrect or not following instructions and removed. The final
dataset consisted of 573 responses from 118 users.
Table 4 shows the most frequently used edit terms for the MTurk dataset. Although the MTurk dataset was

collected using an online survey, common edit terms such as “I meant” and “sorry” represent phrases associated
with spoken English.

In addition, we examined the positioning of the edit terms within the responses (Table 5). We found that out
of 573 total responses, 49% of responses had edit terms in the beginning half of the phrase, 11% had edit terms
at the last half of the phrase, and 40% did not contain any edit terms at all. This suggests that speech interface
users interact with virtual assistants differently from normal conversational contexts and confirm some of the
assumptions made in Section 3. Thus, the traditional speech repair model discussed in the Section 2.3 cannot be
relied on too heavily for accurate command repair. On the other hand, the ScratchThat algorithm enables more
flexible speech repair, allowing non-immediate, out-of-order, and multiple entity replacements at once.

4.2 Interaction Comparison
In order to evaluate our ScratchThat algorithm, we conducted an experiment to assess the interaction speed as
well as the task load of our technique compared to other speech repair methods.

4.2.1 Conditions. We implemented four different methods of retroactively correcting queries which, aside from
our ScratchThat algorithm, can already be found implemented in speech interfaces like commercial dictation
systems [4–6]. They are “repeat”, “delete”, “replace”, and “ScratchThat”. We describe each condition in more detail
below and provide examples for query correction.
Consider the scenario in which a user has made the query: “Set a repeating alarm every Tuesday at 3:45 PM”

and would like to repair the query so that the alarm is set every Wednesday instead of every Tuesday.
• Repeating the entire query again (e.g., “Set a repeating alarm every Wednesday at 3:45 PM”)
• Saying “delete” to simulate a backspace on the query buffer (e.g., “delete delete delete Wednesday at 3:45
PM”)

• Saying “replace” to modify the word(s) in the query with new word(s) (e.g., “Replace Tuesday with Wednes-
day”)

• Using ScratchThat by adding a natural correction clause (e.g., “Actually make that Wednesday”)

4.2.2 Tasks. For the study’s data collection, we built an interactive prompting application that resembles a
voice assistant GUI (Figure 1). The prompting application used the voice recognition functionality, as part of
the W3C Web Accessibility Initiative standard, available in Google Chrome version 70. The study participant
was given instructions through the prompting application and followed the instructions by interacting with the
application using voice commands. Each prompt was given to the participant included an original input query
and a parameter correction. The participant repeated aloud the input query word for word. Then, using the given
parameter correction and one of the four repair methods, the participant said the voice command to modify their
original input query.
For the previously described example of setting a repeating alarm every Wednesday instead of Tuesday, we

provide the series of prompts that are sent to the participant.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:12 • J. Wu et al.

Prompt: “Set a repeating alarm every Tuesday at 3:45 PM.”
Participant: “Set a repeating alarm every Tuesday at 3:45 PM.”
Prompt: “Tuesday→Wednesday”
Participant: Participant says correction phrase for current condition.

Note that the parameter correction prompt is shown to the user using an arrow symbol. This is meant to
discourage the user from simply reading the prompt and to force them to construct their own natural language
responses that follow the given condition’s correction scheme.
Compared to the other three conditions, “ScratchThat” inherently allows participant to be more flexible in

their response to the parameter correction prompt, which also introduces some ambiguity for when a repair
phrase is considered “correct”. For the interaction comparison user study, validity of the response is determined
by a Wizard-of-Oz experimenter in-situ. Later, in our evaluation on ScratchThat’s correction accuracy (Section
4.3), we definitively evaluate the algorithm’s ability to detect and correct repair phrases with varying edit terms.

4.2.3 Study Design and Procedure. We recruited 10 participants (ages 21-27, mean 23.6, 8 males and 2 females) to
evaluate our system. Participants were recruited from our university campus using convenience sampling and
resulted in a population with diverse English speaking fluency that more realistically models the real-world user
base of voice assistants. Only three participants were native American English speakers (i.e., spent a significant
part of their lives in America), and the remaining had varying degrees of accent in their speech. However, all
participants had sufficient English speaking ability to be enrolled in a United States university. Based on our
anecdotal observations, differences in English fluency mostly affected the accuracy of the speech transcription
program rather than speech repair phrases used.
In total, the study lasted around one hour and was composed of four sessions, each meant to evaluate one

of the conditions. Before the beginning of the study, participants were read the description and purpose of the
study and were asked to sign a consent form. Upon completion of the study, participants were paid $10. We
used a Latin square to partially counterbalance the four condition methods per user. Each session involved one
condition method and 20 prompts, and participants completed the four sessions in the order determined by the
Latin square.
Participants sat in front of a laptop computer displaying the earlier described prompting application. Each

prompt was displayed to the participant, who was given instructions specific to each task (Section 4.2.2). The
study was conducted with a Wizard of Oz, who determined the correctness of the transcribed speech of the user’s
voice commands for each prompt. In some cases, accented speech that was mistranscribed by STT was forgiven
at the Wizard’s discretion. At the start of the study, participants learned how to use the condition methods and
the prompting application by completing a practice session including five prompts for each of the four conditions.
The experimental sessions followed afterwards. The set of 20 prompts for each condition were taken from the
user study dataset generated in Section 4.1. We also used the NASA TLX survey to evaluate the comfort and
workload on the user for each of the experimental conditions.

For each participant, we recorded the amount of time taken to complete each prompt (both the time taken to
say the prompt and the time taken by the recognizer) as well as the transcription of their voice as they read the
prompts. From this information, we evaluate the interactions in terms of speed and comfort that ScratchThat
enables, as well the accuracy of our algorithm. We analyzed the interaction speed and task load data using paired
t-tests adjusted with Bonferroni correction.

4.2.4 User Performance. Our first evaluation metric was to compare the time taken to complete a task. We
hypothesize that the more natural it is to execute a task, the faster it should be. Our results show that ScratchThat,
on average, was the fastest method. In fact, it was significantly faster than “repeat” (p < 0.05) and “replace” (p <
0.01), and “delete” (p < 0.01).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:13

Table 4. Top Edit Terms for MTurk Dataset (Left) and User
Study Dataset (Right)

Edit Term Frequency
change 28%
I meant 12%
instead 12%
actually 5%
sorry 4%

Edit Term Frequency
change 27%
actually 24%
make that 14%
I meant 13%
make it 12%

Table 5. Edit Term Location for MTurk Dataset (Left) and
User Study Dataset (Right)

Location Frequency
Beginning 49%
End 11%
None 40%

Location Frequency
Beginning 69%
End 3%
None 28%

After completing all of the tasks, we asked participants to fill out a TLX survey in order to evaluate the perceived
load required. We found that, on average, participants preferred “ScratchThat” in terms of effort and frustration;
“repeat” for performance and mental demand; and “replace” for temporal and physical demand. On the other
hand, the “delete” task required the highest load across all of the tasks due to the user having to count how many
words to delete, with significance when compared to ScratchThat on mental demand (p < 0.05), frustration (p <
0.01), and effort (p < 0.01). This finding is encouraging since the “delete” method is used in currently existing
commercial systems, showing that we could potentially make such systems much less strenuous to use.

4.3 Correction Accuracy
In addition to exploring natural methods of speech repair and evaluating speech repair interactions, we conducted
offline evaluations of the ScratchThat algorithm described in Section 3. Specifically, we aimed to assess the

Fig. 6. TLX survey scores is shown for 6 dimensions. A lower score, indicating less load,
is desirable. On average, ScratchThat had a lower effort and frustration while Repeat
was preferred for performance and mental demand.

Fig. 7. Average time taken by each
correction method. Our system,
ScratchThat, was significantly faster
than others.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

63:14 • J. Wu et al.

Fig. 8. BLEU score vs cost α for MTurk dataset. Dot-
ted line shows BLEU score for unmodified prompts.

Table 6. BLEU score and correction accuracy. BLEU score of unmodified
prompts are also shown as reference. Fleiss’s Kappa (κ) is also shown.

MTurk User Study
Prompt Corrected Prompt Corrected

BLEU 0.60 ± 0.17 0.86 ± 0.31 0.65 ± 0.16 0.94 ± 0.26
Acc. - 79% κ = 0.92 - 77% κ = 0.84

validity of the assumptions made in Section 3.3 and the accuracy of our system in the context of speech command
data rather than regular conversational data used by previous work [13, 21–24, 42, 45].
We performed an automated machine translation and manual human rating evaluation on both the MTurk

(573 responses) and User Study (190 responses) datasets. Both datasets were first preprocessed to fix minor
misspellings and mistranscriptions. In addition, during the user study, some prompts (e.g., “What was the stock
price for GOOG last Tuesday?”) contained company tickers as parameters. Many participants chose to say the
companies associated with the stock ticker rather than reading the tickers themselves (e.g., “What was the stock
price for Google last Tuesday?”). We programmatically replace all occurrences with the company names for
consistency.
BLEU is a method for evaluating the quality of a machine translation by computing the geometric mean of

n-gram precisions [10]. Previous work has used the BLEU score metric for automated evaluation of speech repair
systems on large corpora [13]. However, because speech repair generally replaces only limited portions of the
sentence and most of the query remains the same, the BLEU score gives an over-optimistic score for the quality
of the repair correction. In fact, Table 6 and Figure 8 shows that the BLEU scores for the unmodified prompts are
already above 0.6. Thus, while we use an automatically calculated BLEU score for parameter tuning, we conduct
our final evaluation with human raters. We use the sentence-level BLEU metric with the Smoothing 7 smoothing
function described by Chen and Cherry [10].
Figure 8 shows the result of the α parameter tuning. The maximum BLEU score is obtained at α = 0.8

(m0.8 = 0.86) on the MTurk dataset, which is used as the α for both datasets’ scores in Table 6.
We also show the correction accuracy of ScratchThat on both datasets. The algorithm is run on the original

prompts and corresponding correction clauses, and the output is given to 4 human raters. The raters were
instructed to mark the response as correct if the output would produce the correct action if given to a virtual
assistant. In addition, raters were told to ignore the stop words that are present in the transcribed user study
dataset.
Table 6 shows the resulting accuracies for the MTurk dataset (mmturk = 79%) and the User Study dataset

(mstudy = 77%). Although the corrected BLEU score and BLEU score increase was higher for the User Study
dataset, we find the ScratchThat algorithm performs relatively consistently across both datasets.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:15

5 LIMITATIONS & FUTURE WORK
Throughout this paper, we investigated both interaction methods for command correction and the performance of
the ScratchThat algorithm. We propose next steps for command correction as an interaction and the ScratchThat
algorithm.

In our MTurk elicitation study, we collected a large number of command correction examples (nexamples = 573)
from online crowdworkers (nr esponses = 120). While the nature of the online study limited participant responses
to a textual form, we were able to collect a dataset of imagined speech responses. Our results (Tables 4 & 5)
showed that speech repair with virtual assistant interactions was not well described by traditional conversational
speech repair models described in Section 2.3. Specifically, the editing terms that are commonly used to segment
the reparanda from alterations does not always appear in front of the alteration phrase, making it difficult to
identify repair segments within a single sentence. If a traditional model of speech repair was assumed, then at
least 30% of the prompts in the user study would be misinterpreted. For future work, we seek to construct a
system that can consistently and accurately identify speech repair regions. This would allow more natural user
interactions, supporting mid-sentence repairs and different types of disfluencies.

We also described the ScratchThat algorithm, which leveraged several pretrained NLP models for POS chunk-
ing, NER, text embedding, and dependency parsing. Although these models were trained primarily using text
documents and were not tuned to handle speech data, we show that our approach is able to produce accurate
repairs when evaluated by humans and machines (Table 6). For future work, we seek to further improve repair
correction by training on a corpus of conversation data or speech commands.
Finally, our Interaction Comparison study was not representative of all types of voice assistant interactions

(Table 1). Specifically, we evaluated ScratchThat in the context of a common voice-based conversational assistant
(i.e., Alexa) for productivity and information-retrieval commands. There remains significant opportunity for
evaluating speech repair in broader use-cases, with a greater number of participants and types of speech commands.
In particular, the accurate detection and processing of speech repair in passive interaction scenarios (Section
3.1.3) may differ significantly, due to the presence of free-form conversation and lack of virtual assistant feedback
to the user.

6 CONCLUSION
In this paper, we presented ScratchThat, a method for supporting command-agnostic speech repair in voice-driven
assistants. Our work was motivated by the increasing popularity of voice interfaces and virtual assistants and the
need to improve their usability by enabling command correction.

We first described the ScratchThat algorithm that supports command-agnostic speech repair by automatically
inferring query parameters and computing a novel heuristic for replacement assignment. Our heuristic uses
the semantic and syntactic similarity between entities to support a more generalized repair model capable of
inferring multiple, non-immediate corrections.
We conducted a series of evaluations to elicit natural forms of command repair, compared the interaction

speed and task load of the system to existing voice-based correction methods, and assessed the accuracy of the
ScratchThat algorithm on two datasets (over 700 prompts in total). Our results show faster interaction times for
speech repair-based command correction and 77%-79% correction accuracy.

REFERENCES
[1] [n. d.]. Actions on Google Errors - Conversational components. https://designguidelines.withgoogle.com/conversation/

conversational-components/errors.html. Accessed: 2019-01-25.
[2] [n. d.]. Actions on Google Scale your design - Conversation design process - Conversation design. https://designguidelines.withgoogle.

com/conversation/conversation-design-process/scale-your-design.html. Accessed: 2019-01-26.
[3] [n. d.]. Alexa.bio The Living List of Alexa Commands. Accessed 2018-11-15.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

https://designguidelines.withgoogle.com/conversation/conversational-components/errors.html
https://designguidelines.withgoogle.com/conversation/conversational-components/errors.html
https://designguidelines.withgoogle.com/conversation/conversation-design-process/scale-your-design.html
https://designguidelines.withgoogle.com/conversation/conversation-design-process/scale-your-design.html

63:16 • J. Wu et al.

[4] [n. d.]. Dictanote How to setup Voice Commands? https://support.dictanote.co/hc/en-us/articles/
115002811807-How-to-setup-Voice-Commands-. Accessed: 2019-04-11.

[5] [n. d.]. Dragon Inserting, replacing, and deleting text. https://www.nuance.com/products/help/dragon/dragon-for-pc/enx/
professionalgroup/main/Content/WorkingWithText/inserting_replacing_and_deleting_text.htm. Accessed: 2019-04-11.

[6] [n. d.]. Dragon Revising text. https://www.nuance.com/products/help/dragon/dragon-for-mac/enx/Content/Correction/RevisingText.
htm. Accessed: 2019-04-11.

[7] Steven P Abney. 1991. Parsing by chunks. In Principle-based parsing. Springer, 257–278.
[8] Frank Bentley, Chris Luvogt, Max Silverman, Rushani Wirasinghe, Brooke White, and Danielle Lottrjdge. 2018. Understanding the

Long-Term Use of Smart Speaker Assistants. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3
(2018), 91.

[9] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve
Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[10] Boxing Chen and Colin Cherry. 2014. A systematic comparison of smoothing techniques for sentence-level bleu. In Proceedings of the
Ninth Workshop on Statistical Machine Translation. 362–367.

[11] Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural networks. In Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP). 740–750.

[12] Nancy Chinchor. 1998. Overview of MUC-7. In Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference Held in
Fairfax, Virginia, April 29-May 1, 1998.

[13] Eunah Cho, Jan Niehues, Thanh-Le Ha, and A. Waibel. 2016. Multilingual Disfluency Removal using NMT.
[14] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José MF Moura, Devi Parikh, and Dhruv Batra. 2017. Visual

dialog. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2.
[15] Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S Bernstein. 2018. Iris: A Conversational Agent for Complex

Tasks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 473.
[16] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction

systems by gibbs sampling. In Proceedings of the 43rd annual meeting on association for computational linguistics. Association for
Computational Linguistics, 363–370.

[17] Anushay Furqan, Chelsea Myers, and Jichen Zhu. 2017. Learnability through Adaptive Discovery Tools in Voice User Interfaces. In
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, 1617–1623.

[18] Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency, and Stefan Scherer. 2017. Affect-lm: A neural language model
for customizable affective text generation. arXiv preprint arXiv:1704.06851 (2017).

[19] Ramanathan Guha, Vineet Gupta, Vivek Raghunathan, and Ramakrishnan Srikant. 2015. User Modeling for a Personal Assistant. In
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (WSDM ’15). ACM, New York, NY, USA, 275–284.
https://doi.org/10.1145/2684822.2685309

[20] Yawen Guo. 2018. ImprovChat: An AI-enabled Dialogue Assistant Chatbot for English Language Learners (ELL). Ph.D. Dissertation. OCAD
University.

[21] Peter Heeman and James Allen. 1994. Detecting and correcting speech repairs. In Proceedings of the 32nd annual meeting on Association
for Computational Linguistics. Association for Computational Linguistics, 295–302.

[22] Peter A Heeman and James F Allen. 1999. Speech repairs, intonational phrases, and discourse markers: modeling speakers’ utterances in
spoken dialogue. Computational Linguistics 25, 4 (1999), 527–571.

[23] Julian Hough and David Schlangen. 2015. Recurrent neural networks for incremental disfluency detection. In INTERSPEECH.
[24] Paria Jamshid Lou and Mark Johnson. 2017. Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for
Computational Linguistics, 547–553. https://doi.org/10.18653/v1/P17-2087

[25] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on. IEEE, 1–12.

[26] Boris Katz, Gary Borchardt, Sue Felshin, and Federico Mora. 2018. A Natural Language Interface for Mobile Devices. (2018).
[27] Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2 (1955), 83–97.
[28] Kent Lyons, Christopher Skeels, Thad Starner, Cornelis M. Snoeck, Benjamin A. Wong, and Daniel Ashbrook. 2004. Augmenting

Conversations Using Dual-purpose Speech. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology
(UIST ’04). ACM, New York, NY, USA, 237–246. https://doi.org/10.1145/1029632.1029674

[29] Michael L Mauldin. 1994. Chatterbots, tinymuds, and the turing test: Entering the loebner prize competition. In AAAI, Vol. 94. 16–21.
[30] Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu. 2018. Patterns for How Users Overcome Obstacles in

Voice User Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 6.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

https://support.dictanote.co/hc/en-us/articles/115002811807-How-to-setup-Voice-Commands-
https://support.dictanote.co/hc/en-us/articles/115002811807-How-to-setup-Voice-Commands-
https://www.nuance.com/products/help/dragon/dragon-for-pc/enx/professionalgroup/main/Content/WorkingWithText/inserting_replacing_and_deleting_text.htm
https://www.nuance.com/products/help/dragon/dragon-for-pc/enx/professionalgroup/main/Content/WorkingWithText/inserting_replacing_and_deleting_text.htm
https://www.nuance.com/products/help/dragon/dragon-for-mac/enx/Content/Correction/RevisingText.htm
https://www.nuance.com/products/help/dragon/dragon-for-mac/enx/Content/Correction/RevisingText.htm
https://doi.org/10.1145/2684822.2685309
https://doi.org/10.18653/v1/P17-2087
https://doi.org/10.1145/1029632.1029674

ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven Assistants • 63:17

[31] Daniel OâĂŹSullivan. 2009. Using an adaptive voice user interface to gain efficiencies in automated calls. White Paper, Interactive
Digital, Smithtown, USA (2009).

[32] Aung Pyae and Tapani N. Joelsson. 2018. Investigating the Usability and User Experiences of Voice User Interface: A Case of Google
Home Smart Speaker. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services
Adjunct (MobileHCI ’18). ACM, New York, NY, USA, 127–131. https://doi.org/10.1145/3236112.3236130

[33] Reza Rawassizadeh, Chelsea Dobbins, Manouchehr Nourizadeh, Zahra Ghamchili, and Michael Pazzani. 2017. A natural language
query interface for searching personal information on smartwatches. In 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). IEEE, 679–684.

[34] Sherry Ruan, Jacob O Wobbrock, Kenny Liou, Andrew Ng, and James A Landay. 2018. Comparing Speech and Keyboard Text Entry for
Short Messages in Two Languages on Touchscreen Phones. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 4 (2018), 159.

[35] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and Joelle Pineau. 2016. Building End-To-End Dialogue
Systems Using Generative Hierarchical Neural Network Models.. In AAAI, Vol. 16. 3776–3784.

[36] Ben Shneiderman. 2000. The Limits of Speech Recognition. Commun. ACM 43, 9 (Sept. 2000), 63–65. https://doi.org/10.1145/348941.348990
[37] Elizabeth Ellen Shriberg. 1994. Preliminaries to a theory of speech disfluencies. Ph.D. Dissertation. Citeseer.
[38] Shimpei Soda, Masahide Nakamura, Shinsuke Matsumoto, Shintaro Izumi, Hiroshi Kawaguchi, and Masahiko Yoshimoto. 2012. Imple-

menting virtual agent as an interface for smart home voice control. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific,
Vol. 1. IEEE, 342–345.

[39] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1. Association for Computational Linguistics, 173–180.

[40] Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint arXiv:1506.05869 (2015).
[41] Richard S Wallace. 2009. The anatomy of ALICE. In Parsing the Turing Test. Springer, 181–210.
[42] Shaolei Wang, Wanxiang Che, and Ting Liu. 2016. A Neural Attention Model for Disfluency Detection. In Proceedings of COLING 2016,

the 26th International Conference on Computational Linguistics: Technical Papers. 278–287.
[43] Jason Wu, Sayan Ghosh, Mathieu Chollet, Steven Ly, Sharon Mozgai, and Stefan Scherer. 2018. NADiA: Neural Network Driven Virtual

Human Conversation Agents. In Proceedings of the 18th International Conference on Intelligent Virtual Agents (IVA ’18). ACM, New York,
NY, USA, 173–178. https://doi.org/10.1145/3267851.3267860

[44] Vicky Zayats, Mari Ostendorf, and Hannaneh Hajishirzi. 2016. Disfluency Detection using a Bidirectional LSTM. CoRR abs/1604.03209
(2016). arXiv:1604.03209 http://arxiv.org/abs/1604.03209

[45] Simon Zwarts, Mark Johnson, and Robert Dale. 2010. Detecting Speech Repairs Incrementally Using a Noisy Channel Approach. In
Proceedings of the 23rd International Conference on Computational Linguistics (COLING ’10). Association for Computational Linguistics,
Stroudsburg, PA, USA, 1371–1378. http://dl.acm.org/citation.cfm?id=1873781.1873935

Received November 2018; revised February 2019; accepted April 2019.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 63. Publication date: June 2019.

https://doi.org/10.1145/3236112.3236130
https://doi.org/10.1145/348941.348990
https://doi.org/10.1145/3267851.3267860
http://arxiv.org/abs/1604.03209
http://arxiv.org/abs/1604.03209
http://dl.acm.org/citation.cfm?id=1873781.1873935

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conversational Agents
	2.2 Usability of Voice Interfaces
	2.3 Approaches to Speech Repair

	3 ScratchThat
	3.1 Repair Interactions
	3.2 Parameter Identification
	3.3 Query Correction

	4 Evaluation
	4.1 Correction Clause Elicitation
	4.2 Interaction Comparison
	4.3 Correction Accuracy

	5 Limitations & Future Work
	6 Conclusion
	References

