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Figure 1: Cheek kissing is a common form of cultural greeting in many European and African countries. However, there are
many parameters of how to perform the gesture, including starting on which side and how many times. These parameters can
often be an indicator of the person’s context, such as his or her location or perhaps the gender of the person’s partner.

ABSTRACT

Cheek kissing is a common greeting in many countries around the
world. Many parameters are involved when performing the kiss,
such as which side to begin the kiss on and how many times the kiss
is performed. These parameters can be used to infer one’s social
and physical context. In this paper, we present KissGlass, a system
that leverages off-the-shelf smart glasses to recognize different
kinds of cheek kissing gestures. Using a dataset we collected with
5 participants performing 10 gestures, our system obtains 83.0%
accuracy in 10-fold cross validation and 74.33% accuracy in a leave-
one-user-out user independent evaluation.

CCS CONCEPTS

« Human-centered computing — Gestural input; Ubiquitous
and mobile devices.
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1 INTRODUCTION

Human-computer interaction (HCI) is primarily concerned with
studying how humans interact with computers. One way of ex-
tending that definition is in exploring how computers can be used
to facilitate interactions between humans. To that end, the HCI
community often conceives of new gestures that can be robustly
recognized by a computing system. On the other hand, humans have
spent centuries developing gestures for communicating greetings
and intent, such as hand shaking or finger pointing. One particular
gesture, kissing the cheek(s), is common practice as a greeting in
Europe, Africa, and South America. However, how the kiss is per-
formed varies between locations and can be an indicator of different
contextual factors such as the gender of the person receiving the
kiss as well as the formality of the interaction.

The last couple of decades have seen many smart glass devices
developed and evaluated in academic settings, and they have re-
cently become mainstream with commercial offerings due to recent
advances in technology enabling them to look increasingly more
like normal glasses. While they have primarily been used as plat-
forms for providing feedback to the user (i.e., through a display in
the lens or with bone conduction speakers in the earpieces), smart
glasses are also convenient for deploying sensors such as cameras,
inertial measurement units (IMU), or electroencephalogram (EEG)
electrodes for a variety of interaction and well-being applications.
Snap Spectacles are sunglasses-form factor devices that include
two cameras for recording 3D video [4]. Level smart glasses enable
activity tracking with a 9-axis IMU [2]. The Lowdown Focus glasses
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Figure 2: The Jins Meme smartglasses and its EOG sensor
placement. The IMU is at the end of the right leg.

by Smith use EEG electrodes at the nose bridge and behind the ears
for monitoring brain activity [3].

In this work, we demonstrate the ability to recognize different
types of cheek kissing, enabling a technique for passively sensing
physical and social context. The sensed context could then be used
for automating a number of digital actions. For example, if the sys-
tem detects that the user has performed a greeting gesture, then it
can automatically pause the user’s music to allow the user to fully
engage with their partner. Similarly, detecting a greeting gesture
corresponding to a particular country can turn on an automatic
translation tool set to that country’s language. Another use case
is to passively build a diary of human interactions. This applica-
tion would operate by capturing a photo of the companion’s face
whenever a greeting gesture is recognized. These automatic digital
actions, initiated by passively sensed signals that are already used
to denote the beginning of a social interaction, will help users to
remain engaged in the physical world.

To more concretely describe our work, we enumerate some of
the different variations of the kiss greeting gesture:

o In most of Spain and Portugal, a kiss on each cheek, starting
with the right cheek is standard.

Italians follows a similar convention, although they prefer
to start with the left cheek.

In the Netherlands, cheek kissing begins on the right, and
they go right-left-right [5].

Belgians also give three kisses, but only if the receiver is
older. Otherwise, they only give one.

In France, the number of kisses given ranges from 1 to 4, and
which side to start on, all based on the specific area [7].

In the United Arab Emirates or other Arabic countries, the
greeting is performed with a nose kiss which is called ’Khashm-
makh’, in which two people bump their noses together [16].

To account for the wide variety of gestures possible, includ-
ing those described in the examples above, our work attempts to
recognize all combinations of number of kisses and sides to start
on, treated as a standard gesture recognition problem. We present
the motivation of understanding physical and social context and
potential ensuing applications as the long-term goal.

2 RELATED WORK

To provide background for this research, we briefly describe similar
work in wearables, gesture recognition, and facilitating human
interactions.
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2.1 Wearable Sensing

Wearables are, by definition, typically worn close to the body, which
can enable convenient, always-available interactions. Many wear-
able devices offer a number of interactions by leveraging IMUs for
sensing finger [29] and hand [15] movements. In addition to the
hands, other systems have enabled interactions by tracking tongue
movements using capacitive touch sensors for silent speech [20] or
by placing pressure sensors in the soles of shoes for tracking foot
movements [10]. In addition to facilitating interactions, wearables
also offer the opportunity to passively collect data for understand-
ing human activities and context. IMUs have been used to track
eating episodes [6], and pressure sensors positioned in shoes have
also been used to track exercise activities [24]. Our work bridges
these two similar areas by leveraging the recognition of cultural
gestures as a means of passively understanding context.

2.2 Gesture Recognition with Smartglasses

Humans wear eyeglasses for a number of reasons, including fashion,
correcting eyesight, and blocking sunlight. As an already accepted
accessory for the body, eyeglasses can thus provide a convenient
form factor for instrumentation. Additionally, the face is a very
expressive part of the body, with many signals reflecting conscious
and subconscious cognitive processes. Electrooculography (EOG)
[27], EEG [28], and photo-reflective sensors [19, 23] have been
used to track facial movements and gestures. Such facial gestures
might be used to control devices on-the-body or in-the-environment
[21]. Detecting the interaction of hands on the face [17, 22] or on
a face-worn device [12, 18], have also been proposed. Tracking
different physiological features of the user in free living conditions
has been another significant area of research. Eye blink tracking
[8,13], reading detection [14], eating detection [30] and recognizing
fatigue [31] are all common target activities for smart glasses to
recognize. Our work builds upon this literature to detect a new
class of activities which represent the social context of the user.

2.3 Facilitating Human-to-Human Interactions

Humans are social creatures, relying on interacting with other
humans for survival tasks such as finding food and companionship.
Technology has a long history of keeping humans in touch, even
when they are not in physical proximity. Written language led to
writing letters, which can be transmitted over long distances. Phone
calls allow humans to speak to each other. Photographs and video
chatting enable people to see each other from far away.

There is significant academic work in exploring further ways
of facilitating human-to-human interaction. A number of works
have explored sharing uncommon sensory modalities, including
tactile [11], olfactory [9], and breath and heart rate [25]. Our work
contributes to the space of facilitating human-to-human interaction
by potentially automating many digital actions, allowing users to
stay engaged in the physical environment.

3 KISSGLASS

This section begins by describing the Jins Meme glasses we used
to collect data. We then detail the data collection procedure we
used for obtaining a pilot and full dataset of 10 gestures. Finally, we
discuss the design of a machine learning classification pipeline to
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Figure 3: Example accelerometer signals from a participant
performing 3 kisses starting on the right cheek.

recognize these gestures, and report both 10-fold cross validation
and user independent accuracy scores.

3.1 System

For our studies, we used off-the-shelf Jins Meme glasses [1], which
are equipped with three EOG electrodes in the nosepads, with
the bridge of the nose acting as a reference electrode, leaving the
left and right electrodes as active sensing channels as shown in
Figure 2. In addition, the Jins Meme also includes a 6-axis IMU
with a 3-axis gyroscope and a 3-axis accelerometer in the right leg
of the glasses. The Jins Meme glasses transmit the sensor signals
wirelessly through a Bluetooth Low Energy connection to a laptop
which stores the streaming sensor data to disk. We hypothesized
that the IMU would be able to capture the trajectory of the head
movement while performing the kiss. We were also curious if the
EOG electrodes would be able to detect the presence of another
person that was not the wearer, and if patterns in changing presence
could help recognize the gestures.

Given that the gestures had significant temporal information,
we chose to perform our analysis using the k-nearest neighbors
algorithm (kNN) with a dynamic time warp (DTW) as the distance

metric. In this approach, we will have a database of examples (e.g.

a training set) by which to compare the signal against (e.g. a test
sample). The kNN algorithm considers training examples (e.g. a
"template”) one at a time, comparing it to the test example. For
each comparison, the DTW metric is computed by first finding an
alignment P mapping from each point in a training example X to
each point in a testing example Y. Then the metric is returned as
the Euclidean distance of the aligned training and test samples as
shown in Equation 1.

DTW(X,Y) = | > IX: = Yill?
(i.j)eP

This distance metric calculation also applies for multivariate
signals, such as our sensor signals. The kNN algorithm then chooses
the class that occurs the most frequently from the pool of k closest
samples with the lowest distance (i.e. most similar). We used the

Python library tslearn’s implementation of the algorithm [26].
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Table 1: Participant partner combinations during our study.

Session 2
P3 P3 P4 P4 P5 P5
P4 P5 P3 P5 P3 P5

Session 1
Participant | P1 P2
Partner P2 P1

3.2 Data Collection Procedure

Participants formed pairings of all possible combinations within a
data collection session. We ran two data collection sessions across
two days with 2 participants (1 male, 1 female; average age = 24)
and 3 participants (2 males, 1 female; average = 47), giving 2 and 5
pairing combinations, respectively, as described by Table 1. Within
a pairing, one person acted as the participant and one person acted
as the partner. The participant was asked to wear a pair of Jins
Meme glasses, and the participant and partner pair was asked to
perform the gestures listed in Table 2 together.

For the cheek-kiss gestures, participants were asked to touch
cheeks, starting from a given side and alternating. For the nose-
bump gesture, the participant touched his or her partner’s nose with
their own nose. In addition to performing the gestures, participants
were asked to walk at a regular pace around the room for roughly
half a minute. We included walking as a preliminary experiment
for potentially being able to identify and segment kissing gestures
from everyday activities. In total, each participant-partner combi-
nation performed each gesture 5 times, resulting in a dataset of 8
participant-partner combinations * 10 gestures * 5 of each gesture
= 400 examples. Segmentation and gesture labels were manually
annotated by listening to a microphone recording of the researcher
facilitating the study instructing the participants.

4 ANALYSIS

For our preliminary work, we used simple machine learning tech-
niques to gauge the feasibility of the kissing gestures using the
sensing hardware available. After obtaining encouraging initial
results from a pilot study performed on the first data collection
session, we used sensor selections and hyperparameters findings
to inform the full study, in which we analyzed the datasets from
both sessions.

Table 2: Gestures performed by the participant and partner.

Duration | Body Part | Action | Parameters
4 reps Cheek Kiss Start: left
4 reps Cheek Kiss Start: right
3 reps Cheek Kiss Start: left
3 reps Cheek Kiss Start: right
2 reps Cheek Kiss Start: left
2 reps Cheek Kiss Start: right
1 rep Cheek Kiss Start: left
1rep Cheek Kiss Start: right
1rep Nose Bump -

30 seconds Legs Walk -
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4.1 Pilot Study

We treated the first session of data collection as a pilot study for
evaluating feasibility. We ran an initial experiment using standard
10-fold cross validation, and trained models on all of the sensor sig-
nals together, as well as each sensor independently (accelerometer,
gyroscope, and EOG). These models used feature vectors of size 8, 3,
3, and 2, respectively. We trained and tested on entire segments as
annotated by the researchers, and did not employ a sliding window
which would be necessary for a real time system.

Across all of these experiments, we found that values of k > 1
for the kNN algorithm performed worse than when k = 1. Using all
of the sensors combined, we obtained 61% accuracy on the 10 class
classification problem (random chance baseline is 10%). Considering
the accelerometer, gyroscope, and EOG sensors separately resulted
in accuracies of 91%, 84%, and 23%, respectively. Encouraged by
these early findings, we collected more data to evaluate our system
in an user independent fashion.

4.2  Full Study

In our second session, we collected data from 3 more participants,
resulting in 6 additional pairings. We combined this dataset with the
data from the first session, and ran a similar evaluation, considering
only the 3-axis accelerometer (which produced the best results in
the pilot study). Using the the same 10-fold cross validation scheme
as before, we obtained 83.0% accuracy.

We then tried leave-one-user-out cross validation. In this case, we
select one participant as the test participant, and the model is trained
on all of the remaining participants. The model is then evaluated
on the test participant’s data. Using the same analysis pipeline from
the pilot study, but with the leave-one-user-out evaluation scheme,
we obtained an accuracy of 74.33%.

5 DISCUSSION

While this paper describes the initial feasibility of recognizing a
common greeting gesture, it remains to be seen how well our system
works in more ecologically valid scenarios. One major shortcoming
of our work was that none of the participants in either session of
the user study came from a culture that performs such greetings. As
a result, someone who grew up giving cheek kisses might perform
them more quickly or more fluidly, giving different sensor signals.
Collecting data from people that culturally perform this gesture
would be a clear next step.

In addition to collecting more data, future work might include ex-
perimenting with more sophisticated algorithms as well. Although
the DTW algorithm has seen reasonable amounts of success for
time series classification, recent advances in support vector ma-
chines for time series (e.g., using a global alignment kernel) or deep
neural networks might be able to produce better results. Further-
more, dedicated feature engineering (such as using autocorrelation
for repetition counting) might help prevent confusion between
gestures starting on the same side but with different repetitions.

In this work, we have specifically discussed the detection of a
specific type of greeting. However, this gesture is limited primarily
to Europe, Africa, and South America. Other parts of the world use
different gestures for greeting. For instance, in China and Japan,
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Figure 4: Confusion matrix depicting the results of evalu-
ating the gesture classifier on a dataset of 5 participants.
The gesture labels are of the syntax <num_kiss><which_side>.
The letters to indicate which side the kisses start on are
mapped as follows: 1 = left, r = right, n = nose. For example,
2r corresponds to 2 Kisses, starting on the right cheek.

bowing is the standard, while pressing the hands together is com-
mon in Thailand and India. In the United Kingdom and United
States, handshakes are the norm for greeting someone. These ad-
ditional gestures make for interesting future gesture recognition
work with, for example, smart watches.

6 CONCLUSION

In this paper, we motivated the recognition of different kinds of
cheek kisses as a technique for passive context sensing and aware-
ness. We then discussed the collection of two datasets, comprising 5
participants in total performing 10 different gestures while wearing
the Jins Meme glasses. Finally, we reported a 10-fold cross validation
accuracy of 83.0% and a user independent accuracy of 74.33% when
evaluating a kNN with DTW model using a leave-one-user-out
schema. We conclude by discussing the limitations of our dataset as
well as only recognizing one kind of greeting, and propose future
work ideas given our encouraging results.
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