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Figure 1: a) A SilentSpeller user wears the SmartPalate retainer whose 124 electrodes sense the position of the tongue at 100Hz.
Applications include b) Hands-busy situations where speech is socially inappropriate c) users with low manual dexterity
working in open office environments d) United Nations operations where silent communication is necessary

ABSTRACT
Voice control provides hands-free access to computing, but there
are many situations where audible speech is not appropriate. Most
unvoiced speech text entry systems can not be used while on-the-
go due to movement artifacts. SilentSpeller enables mobile silent
texting using a dental retainer with capacitive touch sensors to track
tongue movement. Users type by spelling words without voicing. In
offline isolatedword testing on a 1164-word dictionary, SilentSpeller
achieves an average 97% character accuracy. 97% offline accuracy is
also achieved on phrases recorded while walking or seated. Live text
entry achieves up to 53 words per minute and 90% accuracy, which
is competitive with expert text entry on mini-QWERTY keyboards
without encumbering the hands.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interaction devices;
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1 MOTIVATION AND CONTRIBUTIONS
Many conditions, such as stroke, multiple sclerosis (MS), Parkin-
son’s disease, essential tremor, amyotrophic lateral sclerosis (ALS),
cerebral palsy, and arthritis can limit a computer user’s manual
dexterity and necessitate alternative text entry methods. One solu-
tion is silent speech, which recognizes text entry via non-voiced
speech. However, the hardware for current silent speech interfaces
is often challenging, given technology that needs to be mounted
on the body (e.g., ultrasound probes, electrodes or microphones
attached to the neck and face) [3, 4, 8, 9]. In addition, most silent
speech interfaces have high error rates when the user is on-the-go
[4] and are limited to a relatively small vocabulary [3]. We present
SilentSpeller, a device in the form of a dental retainer that tracks
the tongue at 100 Hz using 124 capacitive touch sensors on the roof
of the mouth (Figures 1 and 2). Instead of mouthing words, users
spell words without voicing. Typing feedback may be displayed on
a head worn display (HWD), smartwatch, mobile phone, or desktop
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Figure 2: a) Dental impression needed for custom-fit SmartPalate. b) Resulting SmartPalate. c) Palatogram and electrode map.
Note that individual letters are not recognized in real-time but are added to the image for illustration purposes. Time flows
from the right so that letters are spelled in correct order and the right side of the palatogram displays the current state of the
electrodes.

or each word can be spoken to the user through an earbud as it is
recognized. While SilentSpeller is currently wired, which creates
challenges with appearance, a wireless version could be made that
fits completely in the mouth [5].

In addition to medical disabilities, situational impairments, such
as mobility, interfere with text entry. For example, a mobile user
may not have hands available to hold a smart phone or the visuo-
manual attention to attend the screen for gesture typing (Figure
1b) [12]. While head-worn displays (HWD) allow a hands-free way
to view a mobile screen, many users are reluctant to use speech
input in public due to privacy concerns or social opprobrium. One-
handed controllers for fast, silent, and eyes-free mobile text entry,
such as the Twiddler keyboard, require significant training to op-
erate at rates above hunt-and-peck desktop speeds (30 words per
minute) [7]. Some tasks require communication in high noise or
silent environments that preclude the use of voiced speech recogni-
tion; interviews with special operations leaders indicate a need to
communicate silently among members of the team (Figure 1d), and
soldiers have described a need for subtle and silent communication
while on presence patrols. Any text messaging system should be
hands-free, robust to body movements, and, preferably, not require
much training to achieve fast texting rates.

With SilentSpeller, we offer the following contributions:

• Optimization experiments to determine the amount of
data needed to train a SilentSpeller recognizer per user. Two
participants each spelled 2328 words (1164 unique words
twice). SilentSpeller achieves an average 97% character accu-
racy (92% word accuracy) and reaches maximum accuracy
within 1500 words of training.

• Walking versus seated experiments that establish that
SilentSpeller tolerates user movement during input with
little degradation of performance.

• An interactive text entry system that combines the spelling
recognizers with gestures for editing.

• Text entry experiments using the standard MacKenzie-
Soukoreff phrase set where SilentSpeller users “type” up to
53 words per minute (43 average) with 90% accuracy (88%
average).

2 SILENT SPELLING TEXT ENTRY
In Silent Spelling, users silently mouth each letter in the context
of spelling a word. An interesting advantage over mouthing words
is that there is no ambiguity due to homophones. We use Com-
plete Speech’s SmartPalate, which is a dental retainer-type device
with 124 binary capacitive sensors that lines the user’s palate and
captures tongue movements (Figure 2). SmartPalate was originally
developed for speech therapy to correct pronunciation. Data is
sampled at 100Hz and sent to a personal computer or smart phone
via a wired USB hub for analysis. Since the SmartPalate fits firmly
in the top of the mouth, we expect SilentSpeller to be tolerant to
body movements [6]. SmartPalate requires each user obtain a dental
impression so that the electrode array can be custom fit to each
user’s mouth (Figure 2a). Covid-19 restrictions limited the number
of participants who could be fitted at this time.

2.1 Recognizer Pipeline
Principal Component Analysis is performed on training data sets
(which are kept independent from test data). Based on empirical
testing, we chose the top 16 components for recognition. As each
silently spelled word is collected, each data frame of 124 binary
electrode values is projected to the top 16 principal components. The
resulting 100Hz 16-dimensional signal is then decoded using hidden
Markov models. Preliminary testing suggests HMMs outperforms
neural net-based methods for this data set. The models are first
trained on letters and then on triletters, akin to phone and triphones
in conventional speech recognition systems. Tied-state triletters
are used to reduce error for triletters with limited occurrence in the
training data set. We choose a 12-state left-to-right HMM topology
with no skip transitions based on early experiments.

2.2 Corpus and Participants
We use the Mackenzie-Soukoreff phrase set, which consists of 500
phrases, 1164 unique words, and 7048 letters [11]. Each phrase is
about five words long and is designed to be memorable such that
participants can read the phrase quickly, potentially memorize it,
and enter it as if it was their own thought. To tune the parameters
of the system, we collect 2328 isolated words (each unique word
twice) for two participants. P1 and P2 are both male, ages 25 and 50.
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All experiments were conducted in participants’ respective homes,
using Apple MacBook Pro laptops.

To collect samples of silent spelling, we developed a push-to-talk
style recording application. The user pushes and holds the command
button on the keyboard while spelling each word, releasing the
button between words. If the participant makes a mistake, they
re-record the word. Participants are allowed to take a break when
desired. After every word is recorded, an estimate of speed (wpm)
is displayed. The 2328 word data sets required approximately five
hours of input for each of the two participants.

2.3 Offline Isolated Word Testing (1164-word
Dictionary)

Using the 2328-word data sets from P1 and P2, we optimized the
parameters of the model. In general, we average results over 10-fold
cross-validation (i.e., independent training and test sets, random
10% for testing each fold) for testing. We swept over two through
18 states and discovered that 12 states provided good overall accu-
racy and still worked on the fastest articulated letters. Recognizers
trained from the two 2328 word data sets performed exceedingly
well, achieving 97% character accuracy and 93% word accuracy on
P1 and 97% and 91%, respectively, on P2.

3 TOLERANCE TO ON-THE-GO INPUT
SilentSpeller, by its nature, can not be as fast at text entry as a
conventional silent speech system; however, it may enable text
entry while in motion, providing an advantage over EMG, camera,
and ultrasound systems. The electrode array fits snugly in the
mouth, and the tongue is relatively isolated from the mechanical
shock of walking; otherwise, voiced speech while walking would
not be possible. Given these attributes, we expect SilentSpeller to
be as accurate at recognizing silently spelled words when the user
is walking as when seated.

3.1 Experiment Settings
P1 and P2 provided 107 phrases each for both a walking and seated
condition (a total of 428 phrases). The 107 phrases are from the
MacKenzie-Soukoreff phrase set and consist of 556 words; 321 of
them are unique. Common words occur repeatedly in the phrases.
For example, the most frequently used word was “a” which ap-
peared 24 times. We used the same capture system that collected
the isolated dictionary words. Participants enter the isolated words
in the order in which they occur in the phrases, which emulates
entry with a live text entry system (but without the ability to see
or edit the result). For the walking condition, participants walked
continuously indoors while capturing the 107 phrases. The seated
condition was captured at a desk.

Since our goal is to compare walking versus seated text input
we chose to use the most advantageous training that is reasonable
for this study. For each of the two participants, the recognizer is
trained on their 2328 isolated dictionary words plus the 107 phrases
from the condition not being tested. In other words, the recognizer
for the seated condition was trained with the 2328 words plus
the 556 words from the 107 phrases collected during the walking
condition. Similarly, the recognizer for the walking condition was
trained with the 2328 words plus the 556 words from the 107 phrases

collected during the seated condition. No part of any test set is
used in training. During recognition, the system is limited to a
dictionary constructed from the 321 unique words from the 107
phrases. A bigram is constructed using only the 107 phrases and
Laplace smoothing (so that any word combination is possible).

3.2 Results and Discussion
Table 1 presents the results of the study. There is almost no differ-
ence in the accuracy between the seated and walking conditions,
demonstrating the robustness of SilentSpeller to body motion.

participant-condition character (word) accuracy
1-seated 97% (95%)
1-walking 97% (95%)
2-seated 94% (90%)
2-walking 93% (91%)

Table 1: Comparing walking to seated text input.

4 LIVE TEXT ENTRY USER STUDY
In informal experiments emulating SilentSpeller by simply spelling
the words in the MacKenzie-Soukoreff phrase set as fast as possi-
ble, we found text entry surpassed 50 wpm, which is equivalent
to the expert text entry rates on physical [2] and virtual [10] mini-
QWERTY keyboards. While accuracy varies between the partici-
pants in the experiments above, the results show that SilentSpeller
holds promise as a means of text entry. Adding an interface so
that the user can select between the top n-best candidates returned
by the recognizer should improve the speed and usefulness of the
interface.

4.1 Participants and corpus
The same two participants performed the live text entry user study.
The recognizer was trained with the 556 words from the 107 phrases
collected while seated for each participant plus 500 words were
chosen at random from the 2328 isolated words (this method was
chosen for compatibility with an on-going study with more par-
ticipants). For testing, the participants attempted to input the 107
phrases again, as quickly and as accurately as possible.

We employ a bigram stochastic grammar trained on the 107
phrases with Laplace smoothing. Upon inference, HTK returns a 20-
best list of candidates with their likelihoods. Applying the bigram
to this list determines the top candidates.

4.2 Text Entry using SilentSpeller
Following previous work [1, 7, 11], we implemented an interface
application to test the speed and accuracy of text entry using
SilentSpeller on the MacKenzie-Soukoreff phrase set. We provided
a video to instruct participants in how to use the interface. The
application presents phrases to the participant who then transcribes
them over the course of 20 minutes. Using the SilentSpeller app is
similar to using a gesture keyboard [12], included on most smart-
phones. Three interactions are provided: INPUT (silent spelling),
N-BEST-SELECT/TAP (produced by touching the front of the palate
for more than 0.3 seconds and less than 1 second), and ERASE-
WORD/STICK (pressing the tongue firmly on the entire palate
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Figure 3: Live text entry results. Words per minute (left) and accuracy (right) for each of the participants’ three sessions. Solid
lines shows the results using SilentSpeller. Dotted lines shows the results using usual mini-QWERTY keyboard.

between 0.3-1.0 seconds). For each phrase, the user presses a push-
to-record button and inputs an individual word by silently spelling
with the SmartPalate. Upon button release, the captured data frames
are sent to the recognizer. About a second later, the interface shows
the user a list of the five best word predictions in order of proba-
bility. If the first best candidate is correct, it is accepted as soon as
the next input is started. If the correct answer is in the list of five,
the user selects the best candidate with the TAP gesture. If there is
no correct answer among the five, the candidates are deleted with
the STICK gesture and the system returns to the input state. Once
the user has completed a phrase, the user presses the right shift to
advance to the next phrase.

4.3 Results
Figure 3 shows the results of the live text entry experiment. Partici-
pants did the same experiments using the mini-QWERTY keyboard
on their smartphones for comparison. First, it was shown that for
both participants, text entry by SilentSpeller was faster than by
mini-QWERTY. The average maximum session speed over each
participant’s three sessions was 48 wpm. Average text entry accu-
racy (1 - TER) for those respective sessions was 92%. Unlike the
previous offline experiments, this accuracy metric considered user
failures in typing the correct letter, recognizer failures, and correc-
tions. As expected, participants quickly adapted to silently spelling
words for text entry. P2 discovered that his recognizer was good
enough that he rarely waited to see the result of the output before
continuing to the next word. This strategy resulted in a maximum
53 wpm speed while still maintaining 90% accuracy. When asked
about his experience, P2 reported a sense of “flow” when the recog-
nizer was working well which allowed him to keep a rhythm to the
text input. This success suggests more investment in improving the
recognition rates may cause the other participants to reach similar
speeds. At the end of the experiment, P1 and P2 attempted another
20 minute live text entry session while walking and saw similar
results to their seated performance, as expected.

5 CONCLUSION
We present SilentSpeller, an interface for text entry using unvoiced
spelling of words. We evaluate SilentSpeller’s recognition system

on a dictionary of 1164 isolated words resulting in average 97% char-
acter accuracy. In another test, text entry speeds and accuracies
were relatively unaffected by the user walking during input. Live
text entry experiments demonstrate texting rates competitive with
mobile phone virtual QWERTY typing, but without encumbering
the hands. These results suggest SilentSpeller can be an efficient
text entry system and may find niche applications for on-the-go,
silent, hands-free text entry or silent text entry for people with
movement impairments. Further work will explore specific appli-
cation domains, additional sensors for the lips to tune recognition
accuracy, and user independent and user adaptive recognition.
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