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ABSTRACT 

In a piano lesson, a student often imitates the teacher’s 

playing in terms of speed, dynamics, and fingering. While 

this learning model leverages one’s visual and even audial 

perception for emulation, it still lacks an important 

component of piano playing – the tactile sensation. We seek 

to convey the tactile sensations of the teacher's keystrokes 

and then signal the student's corresponding fingers. We 

implemented an instrumented fingerless glove called 

Tactile Teacher to detect finger taps on hard surfaces. Since 

finger taps generate acoustic signals and cause vibrations, 

we embedded three vibration sensors on the glove and use 

machine learning algorithms to analyze the data from the 

sensors. After a brief training procedure, this prototype can 

accurately identify single finger tap in a very good 

performance at above 89% accuracy, and two finger taps 

resulted in accuracy around 85%. 
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INTRODUCTION 

In a piano lesson, the teacher instructs the student by 

demonstrating the physical playing of the piece. The 

student observes by watching the teacher’s hands, following 

along in the score, and listening to the minute details of the 

sounds produced by the teacher. Clark et al. describes these 

common representations when conveying motor skills as 

the common ground [3] in which novices (e.g. students) 

usually benefit from different sensory inputs produced by 

masters (e.g. teachers). For instance, in a real piano lesson, 

a teacher would tap his or her fingers on the palm or on the 

back of the hands of the students so they would experience 

the sensation of the finger taps from the teacher. This real 

life example inspired us to create Tactile Teacher to capture 

the teacher’s fingering, and enhance the learning experience 

for the students. The result is an implementation that adds 

an additional medium – touch sensation – for assisting 

students in learning piano. 

In this paper, we start by discussing the importance of 

sharing common representations for learning motor skills. 

Based on the experiences of other researchers, we explore 

the possible designs and implementations of Tactile 

Teacher, a device that can detect finger taps without 

covering or hindering the fingers. As shown in Figure 1-

right, the fingerless glove employs three piezo vibration 

sensors mounted on the back of the user’s hands. With a 

micro-controller and a machine-learning program on the 

host computer, we obtained accurate results when tapping 

one finger (89%) and two fingers simultaneously (85%). 

We conclude the paper with discussions about the potentials 

of this implementation in addition to enhancing learning in 

a piano lesson. 

Figure 1. Tactile Teacher Prototype with a microcontroller 

(left) directly connected to an instrumented glove (right)  

RELATED WORK 

Sharing Tactile Sensations 

Sharing common representations is crucial in learning, 

especially for motor skills [3]. Sharing haptic feedback for 

communication and learning is particularly interesting 

because touch sensation is invisible and difficult to convey 
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through verbal descriptions. Thus, researchers have created 

prototypes that employ preset haptic stimuli to enhance the 

learning procedures of various motor skills, such as 

handwriting [14], memorizing force sequences [10], and 

remembering finger patterns [6,13]. 

Chellali et al. argues that real-time haptic communication 

will dramatically improve the learning curve for motor 

skills [2]. Typically, the haptic communication channel 

needs to be coupled with verbal or visual channels to 

maximize the effects [1]. It would be beneficial to engage 

in a multi-modal experience to enhance the learning of 

motor skills, especially with the experience of haptic 

communication. However, very few projects (e.g. [11]) 

discuss the types and means of sharing tactile 

representations in real-time learning scenarios, especially 

for those applications that require immediate responses. 

Haptic Feedback for Guidance and Learning 

Several researchers employ haptic or tactile guidance for 

providing additional information and improving the 

usability when using multi-touch devices, e.g. [8,15]. 

However, our task of assisting the piano learning process 

also requires the sensing of speed, dynamics, and fingerings 

on the originating hand and then rendering these sensations 

on the receiving hand. Mobile Music Touch (MMT) [6] 

employs various vibration motors to convey the tactile 

sensations for piano teaching purposes. The MMT glove 

addressed the rendering side of our task, and demonstrated 

the passive learning effects. However, the data used for 

vibration output is hardcoded in the program and lacks the 

spontaneity as well as the artistic aspects of timing and the 

force of hitting the piano keys that are demonstrated by the 

pianist (e.g., a teacher or a virtuoso). Therefore, in addition 

to building a piano glove that renders the finger tapping for 

students, we designed a sensing glove to capture the piano 

fingering from the teachers. 

Designs of Always Available Sensing Devices 

Instead of instrumenting a piano with sensors, the design 

decision was made to provide an always-available input 

device for capturing finger taps that can be applied to any 

regular piano or hard surfaces. Various approaches can be 

taken to achieve this goal. For instance, computer vision 

could help detect the finger movements and the location of 

the fingers [4]. This approach would require intensive 

computation and is error prone without rigorous 

configurations. An alternative method is to wear sensors on 

hands or arms for detecting motion. We have seen many 

different efforts in this approach. Sensing muscle 

movements by using EMG is one feasible method for 

detecting finger movements as an always-available input 

device [12]. However, EMG sensors cannot accurately 

recognize the timing of finger tapping on hard surfaces, 

which is crucial to piano playing. The other approach is to 

wear an array of vibration sensors on arms for detecting 

bio-acoustic signals on the skin [5]. In this implementation, 

users need to train the system every time before use since 

the locations of the sensors can vary when wearing the 

armband. In addition, this implementation is not capable of 

sensing multiple finger taps simultaneously. Therefore, we 

implemented a lightweight sensing glove with a fun and 

engaging way to train the system to distinguish fingers and 

recognize the strength of the finger taps. 

HARDWARE DESIGN AND SENSING 

Glove Design 

Designing the Tactile Teacher glove was a challenging task. 

Pianists would not appreciate wearing a glove that would 

affect dexterity. Thus, the traditional pressure-sensing glove 

that employs piezo pressure sensors on the fingertips is not 

appropriate. We also needed to avoid additional materials 

on the fingers and employ as few sensors as possible. We 

initially employed only two piezo vibration sensors 

(MiniSense 100, Measurement Specialties, Inc.) on the back 

of the hand. Table 1 Column 1 shows that this configuration 

is capable of classifying the signals from one-finger taps 

(93%), but with very bad results when testing two-finger 

taps (< 50% recognition rate on average). To improve the 

results of recognizing two-finger taps, we added a third 

sensor. We experimented with many different sensor 

placements with these three sensors. Placing the sensors on 

the wrist (Figure 3B) would remove the burden of wearing 

a glove, which would be ideal for the pianist. However, 

putting the sensors on the back of the hand - closer to the 

fingers - returned better results. In the following sections, 

we describe the sensor placements and the training of the 

machine learning classifier. 

 

Figure 2. Top: signals of index finger tapping. Bottom: 

tapping of index-ring finger combination. 

The Waveform from Different Finger Combinations 

Figure 2 shows sample data received by the host computer 

with the sensor placements in Figure 3-D. The blue, green 
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and red lines represent signals received from the right, 

middle and left sensors, respectively. These signals exhibit 

characteristics that would impact the machine learning 

results. For instance, in the upper chart of Figure 2 (one-

finger tap), the tallest spike in the green line appears before 

the tallest spike in the blue line while the lower chart (two-

finger tap) depicts how the tallest spike in the blue line 

happens only slightly before the tallest spike in the green 

line. This relationship is due to the smaller distance from 

the right sensor to the tapping finger (ring finger) in a 

double-finger tap than a single-finger tap – the vibration 

needs to travel from the index finger to the right sensor.  

Likewise, in a ring-finger tapping event, the tallest spike in 

the blue line would appear before the tallest spike in the 

green line, in reverse order of the spikes shown in the upper 

chart of Figure 2. 

Hardware and Data Processing 

As shown in Figure 1, we employ a Maple Mini board 

(from LeafLabs) [7] to sample three ADC channels at 

6.5KHz from piezo vibration sensors and send the data to a 

computer for further data processing, before running a 

machine-learning program for classification. This data 

processing includes exponential smoothing and filtering. 

When the smoothed data from one of the three channels 

exceeds a triggering threshold, the subsequent samples from 

all of the channels are considered as a tap event. Likewise, 

if the samples fall under the threshold, the signal is 

considered to have exited the tapping session. As shown in 

Figure 2, each tap comes with the tallest spike and few 

shorter spikes, each of which lasts for about 12-17ms (58-

83Hz). To ensure that the samples influenced by a tap event 

are filtered, the key parameters, such as the threshold, 

smoothing factor, and number of samples around the 

exceeding time, are tuned. 

After smoothing and filtering, 174 features can be extracted 

from each three-sensor-input event for machine learning 

purposes. These features include the three averages and 

square averages of each channel, as well as the three ratios 

and square ratios between the 2-combinations of the three 

channels, totaling to twelve features. The system also 

computes a 256-point Fast-Fourier Transform (FFT) for 

transforming input from the time domain to the frequency 

domain. Because the frequency of the tap waveform is 

roughly between 50 to 100 Hz, only the lower nine bins (23 

Hz each) are used for computing the normalized decibels; 

FFT is also applied to the log10 of the sensor data, totaling 

162 features from FFT. Finally, peak time difference and 

peak value ratios are calculated for each 2-combinations of 

the three sensors’ waveform, giving six features. The 174 

features are then classified using the Support Vector 

Machine (SVM) package from Weka [9]. The latency of 

computing the data for each tap event, from receiving the 

data on the host computer to finishing the computation, is 

about 128ms on an Intel® Core™ i5 processor. 

Training Procedure 

Since people have different sized hands, the system requires 

an initial training of the machine-learning model by playing 

the well-known tune “Ode to Joy”. This procedure not only 

makes the training session more enjoyable than simply 

repeatedly tapping on the same key multiple times, but it 

also gives the machine learning algorithm a chance to 

observe the natural variations of finger movement that may 

only occur when the player is tapping the key organically. 

During the training session, the program records all of the 

data from the three vibration sensors to build the model 

described above. Since the program knows the finger taps 

required for the tune, it can map the set of features to each 

finger as it progresses. 

 

Figure 3. Different sensor placements and orientations 

Table 1. Sensor placements versus tap accuracy percentage. 

Finger 1 2 3 4 5 
Single 

Avg. 
1-3 2-4 3-5 Total 

Avg. 

Pl.A 100 100 90 85 90 93 
70 

20 60 76.875 

Pl.B 100 100 50 75 45 74 55 60 70 69.400 

Pl.C 75 55 50 35 55 54 80 65 70 60.600 

Pl.D 95 100 90 70 90 89 100 75 85 88.125 

Results from Different Sensor Configurations 

In order to find the best sensor placements, we have 

conducted the experiments with the machine learning 

classifier described above. The experiment results were 

obtained by the following procedure: after the model-

training procedure, 20 taps for each finger and finger 

combination were performed, and each tap’s correctness 

was verified. Sensor locations were changed between trials 

for experimenting results from different sensor placements. 

We picked four example placements as shown in Figure 3, 

and reported the results in Table 1, where finger numbers 1 

through 5 correspond to the thumb, pointer, middle, index 

and pinky fingers, respectively. 

As predicted, the best result is derived from sensors placed 

on the back of the hand in a radial fashion. (Figure 3-D). In 

our observations, the orientations of the sensors are also 

important. Specifically, the placements of the sensors 

aligned toward the spreading directions of the fingers 
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obtained maximal sensibility. The optimal placement is to 

align one sensor in the same direction of the middle finger, 

and the other two sensors placed facing towards the in-

between directions of the rest of the fingers (i.e., between 

thumb and index finger, between ring finger and pinky). 

CONCLUSION 

We are excited that Tactile Teacher can capture teacher’s 

finger tapping with high accuracy. We have demonstrated 

the prototype to a piano teacher in a demo session who 

responded with positive feedback and showed enthusiasm 

about the prototype and its idea. While she would refuse to 

wear a complete glove with fingers covered, she believes 

she could wear our fingerless glove in piano playing and 

teaching that could benefit novice piano learners. 

In the future, we would explore capturing more of the 

embodied experience of piano playing for a more engaging 

kinesthetic learning. For instance, a pianist may use body 

movements to increase the dynamics of the music, and 

achieve complex, multi-limb movements. Eventually we 

may also use additional sensors worn on the arms or other 

body parts for detecting and conveying these supplemental 

features. These sensors may also provide data from which 

we can more intelligently filter the vibration sensor signals, 

rather than the currently rudimentary approach of setting a 

threshold through experimental data. 

In addition to complementing piano lessons, we believe this 

prototype can lead us to many other applications that were 

not possible before, especially those that require fine 

dexterity and a high level of motor skills, such as learning 

other (musical) instruments that also require finger 

movements. This prototype can also be extended and 

applied to the rehabilitation procedure, including regaining 

the capability of using hands of a post-stroke patient.  

SUMMARY 

In this paper, we have described an implementation of a 

light weight fingerless glove to recognize the finger taps in 

piano playing with only three vibration sensors placed on 

the back of the hand. These sensors, passed into a machine 

learning classifier, provide sufficient results of both 

keystrokes by a single finger (89% accuracy) and by two 

fingers tapping (85% accuracy) simultaneously. These 

results are encouraging and give us the confidence to test 

the prototype in a real world setting with a real pianist 

giving a lesson. We conclude the paper with the positive 

feedback from a pianist and the many rich possibilities 

derived from this glove configuration. 
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