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ABSTRACT
We present TongueBoard, a retainer form-factor device for
recognizing non-vocalized speech. TongueBoard enables ab-
solute position tracking of the tongue by placing capacitive
touch sensors on the roof of the mouth. We collect a dataset
of 21 common words from four user study participants (two
native American English speakers and two non-native speak-
ers with severe hearing loss). We train a classifier that is able
to recognize the words with 91.01% accuracy for the native
speakers and 77.76% accuracy for the non-native speakers in
a user dependent, offline setting. The native English speak-
ers then participate in a user study involving operating a
calculator application with 15 non-vocalized words and two
tongue gestures at a desktop and with a mobile phone while
walking. TongueBoard consistently maintains an informa-
tion transfer rate of 3.78 bits per decision (number of choices
= 17, accuracy = 97.1%) and 2.18 bits per second across sta-
tionary and mobile contexts, which is comparable to our
control conditions of mouse (desktop) and touchpad (mobile)
input.

CCS CONCEPTS
•Human-centered computing→ Interaction techniques;
Ubiquitous and mobile devices;

KEYWORDS
wearable devices, input interaction, oral sensing, subtle ges-
tures, silent speech interface

ACM Reference Format:
Richard Li, Jason Wu, Thad Starner. 2019. TongueBoard: An Oral
Interface for Subtle Input. In Augmented Human International Con-
ference 2019 (AH2019), March 11–12, 2019, Reims, France. ACM, New
York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3311823.
3311831

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
AH2019, March 11–12, 2019, Reims, France
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6547-5/19/03. . . $15.00
https://doi.org/10.1145/3311823.3311831

1 INTRODUCTION
Conversational technologies, such as Google Assistant, Siri,
and Alexa, facilitate natural and expressive interaction with
online services, connected Internet-of-Things (IoT) devices,
andmobile computer interaction.While these conversational
interfaces are popular due to their ease of use, they often
rely on speech transcription technology that are ineffective
in noisy environments, are often socially unacceptable, and
present privacy concerns of the microphone inadvertently
capturing nearby conversations or having nearby listeners
hearing the user’s commands.

We present TongueBoard, an oral interface for subtle ges-
ture interaction and control using silent speech. Tongue-
Board is a retainer form-factor device that tracks the move-
ment of the tongue, enabling silent speech recognition and
accurate detection of tongue gestures. Our system’s accurate
characterization of the tongue’s position and movement al-
lows for subtle interaction through a combination of silent
speech vocabulary sets and tongue gestures. We discuss how
our system can be used to control common user interfaces
by supporting the capabilities of existing input hardware.
To evaluate the accuracy of our system, we test a lexicon
consisting of 21 words (numerical digits, mathematical op-
erations, and time descriptors) and 9 tongue gestures. We
first evaluate the offline accuracy of the silent speech recog-
nition with data from two American English speakers and
two non-native deaf speakers. In addition, both interfaces
are also compared in a live study that compares its accu-
racy and interaction speed to traditional inputs (mouse and
touchscreen) in stationary and mobile contexts.

2 RELATEDWORK
Subtle Interfaces
While some gesture interfaces are expressive and afford fast
input, they may not be practical for everyday use. Gestures
that are subtle or that utilize everyday movements are more
likely to be socially acceptable and willingly performed by
users [31]. Many gesture interfaces seek to minimize their
noticeability by requiring little or no obvious movement, and
others allow for the interaction to be performed out of view.
Despite the challenges of capturing signal from low-motion
gestures using traditional sensors, electromyography (EMG)
has been successfully used to capture neuromuscular signals
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Table 1: Wearable Silent Speech Interface Comparison

Silent Speech Interface Modality Proxy Dictionary Accuracy Invisible Walking
Bedri et al. 2015 [6] Optical & Magnetic Jaw and tongue 11 phrases 90.50% No No
Kapur et al. 2018 [21] sEMG Jaw and cheek 10 words 92.01% Yes No
Meltzner et al. 2018 [27] sEMG Face and neck 2200 words 91.10% No No
Sun et al. 2018 [36] Camera Lip movement 44 phrases 95.46% No No
Fukumoto 2018 [13] Audio Ingressive speech 85 phrases 98.20% No No
TongueBoard Capacitive Tongue 15 words/2 gestures 97.10% Partially Yes

associated with different movements [8, 26]. Other input
interfaces support subtle interaction by requiring movement
of unseen body parts to decrease the visibility of the gesture.
Eyes-free [2, 29] interfaces and in-attentive gestures allow
interactions to take place out of view, such as below the table
or inside the user’s pocket [17, 32, 34]. Recently, the ear has
been identified as a promising place for supporting subtle
interactions and monitoring physiological signals such as
heart rate, blood pressure, electroencephalography (EEG),
and eating frequency [5, 15, 16, 30]. Motion of the temporalis
muscle, responsible for moving the jaw, causes movement
and deformation of the ear, which can be sensed through
barometric and in-ear electric field sensing [1, 24, 25].

Hidden areas such as the inside of the mouth can also be
sensed using a variety of methods, including neuromuscular
signals (EEG, EMG), skin surface deformation (SKD) [28],
bone conduction microphones [3], optical approaches (in-
frared proximity sensors) [4, 33], and wireless signals [14].
Retainer form-factor oral and tongue sensors have also been
explored for enabling tetraplegics to control electronic de-
vices and powered wheelchairs using a tongue-drive system
[22]. However, many of the sensing approaches provide an
incomplete or low resolution characterization of the inner
mouth and are not suitable for more complex gestures and
silent speech applications.

Silent Speech
Silent speech interfaces allow the user to communicate with
a computer system using speech or natural language com-
mands without the need to produce a clearly audible sound.
These interfaces allow users to communicate efficiently with
computer systems without attracting attention or disrupt-
ing the environment using traditional voice-based interfaces.
Denby et al. [10] and Freitas et al. [11] provide comprehen-
sive surveys of silent speech interfaces used for speech sig-
nal amplification, recognition of non-audible speech, and
“unspoken speech” (imagined speech without any explicit
muscle movement). Broadly, they fall into the categories of
physical techniques (which measure the vocal tract directly),
inference from non-audible acoustics, and electrical sensing

(which measures the activations of actuator muscle signals
or command signals from the brain) [10].
More recently, improvements have been made in several

areas of sensing described in Denby et al. by incorporating
novel hardware [12] and more advanced machine learning
techniques [18]. Several systems have incorporated deep
learning techniques to lipread speech for the purposes of
silent speech and augmenting automatic speech recognition
(ASR) models [35, 37]. Most relevant to the work presented
in this paper is research done on subtle physical sensing of
silent speech. Table 1 shows several recent silent speech inter-
faces and situates our work with regard to sensing modality,
proxy, dictionary size, accuracy, whether the sensed phe-
nomenoni is visible to a bystander, and usability while walk-
ing.

We position our main contribution as an interaction that is
robust to motion artifacts. To the best of our knowledge, the
works noted in table 1 still require significant work to be able
to withstand noise from external movements. Furthermore,
with practice, TongueBoard can be used with no movements
noticeable by an observer, since all motions are contained
within the mouth.

3 TONGUEBOARD
Interaction Design
We construct a silent speech interface with 21 words for
application input and nine tongue gestures (Table 2). When
used together, TongueBoard is able to support numerical
input, navigation, and item selection, enabling a wide array
of potential interactions.

• Digits & Text - While we designed our vocabulary pri-
marily to support a calculator application, recognition
of digits can be used for dialing phones, selecting be-
tween Smart Reply suggestions [20], or controlling a
multitap-like telephone keypad (e.g., saying “2 2 2” to
select a C), allowing slower but more expressive input.

• Navigation - TongueBoard emulates a d-pad (up/down/
left/right) by allowing users to place their tongue on
certain regions on the roof of the mouth. Pressing the
tongue fully against the roof of the mouth is selection.
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• Editing - Four swiping gestures (left-right, front-back,
etc.) enable editing commands such as backspace.

• Control - Progressively disclosing interfaces on head
worn displays such as Google Glass follow a hierarchi-
cal structure where each utterance displays a limited
list of potential options (‘OK Glass ... Send a message to
... John Smith ... Be there in 5 minutes”). TongueBoard
can support similarly rapid and accurate interaction
through mapping options to TongueBoard’s lexicon. In
practice, the most commonly used commands would
be directly included in the default vocabulary set.

In this section, we have described the silent speech and
subtle gesture components of TongueBoard’s interaction
technique. Moreover, we suggested subtle alternatives to
existing input mechanisms for common interface paradigms
using our system.

Table 2: TongueBoard Lexicon

Vocabulary Group
0-9, oh Digits (11)
add, subtract, multiply, divide, percent Arithmetic (5)
AM, PM, hours, minutes, seconds Time (5)
D-pad, Swipe Gestures, Full Navigation (9)

System Overview
Hardware. TongueBoard uses the CompleteSpeech Smart-
Palate system to detect the location of the tongue inside the
mouth. The CompleteSpeech SmartPalate system is a com-
mercially available system intended for speech therapy. The
SmartPalate system consists of an array of 124 capacitive
touch sensors embedded in an oral mouthpiece supporting
a sample rate of 100 Hz. A DataLink module reads the raw

Figure 1: CompleteSpeech SmartPalate

capacitive values of the sensors and transmits binary states
for each of the sensors to a laptop or smartphone through a
standard USB cable.

Data Processing. The SmartPalate sensor array provides con-
sistent and accurate tracking of the user’s tongue as it moves
against the roof of the mouth, allowing clear differentiation
between words and gestures in our vocabulary.

We use a classification algorithm that leverages both tongue
placement information and temporal movement for word-
level silent speech classification and tongue swipe detection.
Specifically, we use a support vector machine (SVM) with a

Figure 2: Example visualization frames of TongueBoard sen-
sor data. Red indicates the points where the tongue contacts
the roof of the mouth, and blue indicates otherwise.

global alignment kernel (GAK) [9], shown to be an effective
discriminative model for time series data. Hyperparameter
tuning was performed using an off-the-shelf optimizer [23].
A lightweight classifier such as an SVM is advantageous
when compared to more sophisticated models such as deep
neural networks due to its relatively lower processing re-
quirements, which is crucial for mobile applications. The
resulting advantages are lower latency in the output and less
battery consumption.
Preliminary results revealed that the average example

length was 1.29 s (or 129 samples at 100 Hz), and that resam-
pling input segments (using average downsampling) to 10
samples was sufficient for accurate and fast classification.
Maintaining the higher number of samples (100 samples/sec)
would allow for greater temporal resolution and potentially
better classification accuracy but would also increase the
inference time of the system. Our aim was to maximize clas-
sification accuracy while minimizing inference time while
running on a commodity laptop.
In contrast to the machine learning procedure required

for classifying silent speech, recognizing tongue gestures is
much simpler. Tongue placement is represented as a single
point, computed as the centroid of the currently activated
electrodes (Figure 2). Through some experimentation, we em-
pirically set location boundaries for activating each button.
We found that we are able to comfortably fit four activation
regions without much overlap.
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Figure 3: Offline accuracy across users and vocabulary sets

4 EVALUATION
User Study - Offline Accuracy
We quantify our system’s silent speech recognition accu-
racy by evaluating offline classification performance on 21
common words, including the numerical digits, arithmetic
operators, and time descriptors (Table 2).
Due to the time and cost of fitting and producing a per-

sonalized Smart Palate per user, a limited number of four
participants were recruited for this study. Two of the par-
ticipants were males and native English speakers, while 1
male and 1 female were native Russian speakers with severe
hearing disabilities that affect their speech. The inclusion of
these non-native deaf speakers is due to on-going work on
speech rehabilitation which compares SpeechPalate patterns
between fluent and disfluent speakers [19].
Each participant collected 20 examples for each of the

21 words, presented in random order, forming a dataset of
20 examples * 21 words * 4 participants = 1680 utterances.
Participants activated the silent speech interface using a
"hold-to-gesture" mechanism, where the recognition system
was fed data segmented by a key or button press. It is also
possible to provide segmentation using a highly distinctive
tongue gesture or train a completely live classifier. However,
we were interested in quantifying the accuracy of the silent
speech recognition alone and did not investigate these other
options in our study.
Accuracy was calculated with respect to different user

and vocabulary groupings. Datasets were created for each
of the four users, along with the native speakers, non-native
speakers, and all the users. Three additional vocabulary sub-
sets were created for specific applications: Digits (numerical
digits), Calculator (numerical digits and mathematical oper-
ations), and Time (numerical digits and time descriptors).

Using the data processing and machine learning tech-
niques previously described, we evaluate each user/vocabulary
set pair using ten iterations of shuffle split cross validation
where random independent train/test sets of 75%-25% were
generated.
Figure 3 shows the results of the offline accuracy experi-

ments. When considering the entire 21-word vocabulary, the
classifier accuracy across all users wasMall = 84.36%. The
native English speakers (Users 1 and 4) achievedmuch higher
accuracy (Mnative = 91.01%) than the non-native, deaf users
(Mnon . = 77.76%). The highest accuracy was achieved by
User 1 (M1 = 91.71%) while User 2 had the lowest accuracy
(M2 = 73.90%).

As the vocabulary set was limited to include only smaller,
specialized subsets, the recognition rate of the system im-
proved. User 1 achieved the highest accuracy on the Digits
set (11 words) with Mdiдits,1 = 98.18%, and on average,
the Digits set was the most distinctive (Mdiдits = 88.75%).
Using the Digits set, nonnative recognition accuracy was
Mdiдts,non . = 83.73%. Both the Calculator set and Time set
contained 16words, and had lower accuracy (Mcalc = 84.77%,
Mt ime = 86.10%).
Overall, our offline evaluation of TongueBoard shows it

is able to recognize our mid-size vocabulary sets with high
accuracy. For small vocabulary sets such as the Digits set, our
system is able to achieve accuracies above 95%, making it suit-
able for use-cases described in the interaction design section.
In particular, we find it encouraging that input queries from
deaf and hard of hearing users can be recognized by our sys-
tem with relatively high accuracy. As deaf speakers cannot
use audio feedback to modulate their speech, they can be dif-
ficult for both human listeners and computers to understand.
For example, the word error rate of audio-based transcription
of 10 phrases is around 40% for deaf speech [7]. Our system’s
recognition operates by tracking the speaker’s tongue and
can ignore the acoustic differences of deaf speech. Perhaps
TongueBoard may one day augment automatic speech recog-
nition (ASR) systems or can be used as an interface to produce
computer generated speech, allowing deaf users to operate
speech-controlled devices [7].

User Study - Live Input
The two native English speakers from the previous data col-
lection effort also participated in a study to evaluate the
system’s performance in a real-time setting. Our aim was to
measure the performance of the classifier in realistic contexts
and to compare the speed and accuracy of the TongueBoard
interaction with traditional input methods. The two partici-
pants first participated in a pilot study, and then engaged in
an interaction study.
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Figure 4: Live laptop results.

Figure 5: Confusion matrix across all users and vocabulary

Both of these studies involved operating a calculator appli-
cation that accepted input from TongueBoard, using a button-
segmented live classifier, and the default input modality for
the respective device. Participants were asked to evaluate a
series of mathematical expressions. In addition to silently
mouthing for digit and arithmetic operation input, a “full”
gesture (i.e., tongue pressed against the roof of the mouth at-
tempting to activate all electrodes) was mapped to backspace
and a “swipe up” gesture (i.e., running the tongue from the
front of the mouth to the back) was mapped to the evaluate
(“=”) button.

Pilot Study on a PC. The pilot study was conducted on a
Lenovo Thinkpad laptop computer, comparing the Tongue-
Board system with the laptop’s pointing stick and trackpad
buttons. The classifier was run live in the background of
the calculator application and was trained on the Digits and

Arithmetic data from the offline data collection. The expres-
sions consisted of two randomly generated integers between
-100000 and 100000, and an arithmetic operation. Each ex-
pression also prompted the user to use either the “tongue”
modality or the mouse modality. Each user entered a total of
50 expressions.
Figure 4 compares the text entry speed of TongueBoard

and traditional inputs. For each input method, we quantify
the time needed to correctly enter the first n characters of
the prompt. The time needed to reach n correctly typed char-
acters includes the time taken by the user to perform the
necessary backspace and retype operations. To eliminate
variations caused by initial mouse seeking and prompt read-
ing, we compute the speed with respect to the time the first
character was successfully entered.
Overall, using the TongueBoard achieves an input accu-

racy ofMpilot,tonдue = 94.07% for laptop input. Our analysis
shows that TongueBoard is able to recognize most words
in the vocabulary set with the exception of a small number
of confused signals (Figure 4). In particular, we discovered
that “+” (pronounced “add”) and “1” (pronounced “one”) pro-
duce very similar signals. Figure 5 shows this ambiguity in
the offline confusion matrix, where there was a significantly
higher number of misclassifications between the two words.
These errors highlight the unavoidable flaw with our system:
since production of speech involves more than just tongue
movement (i.e. lip and jaw movements are also critical), the
signals we obtain may not be necessarily unique per word.
Additionally, the two participants, both native American Eng-
lish speakers, complained that it was unnatural to say “one
add two” or “five subtract four.” To improve the separability
of the vocabulary set and make the interface more natural,
a new dataset was collected for the following smartphone
study that replaced "add" with "plus" and "subtract" with
"minus".
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Figure 6: Live Mobile Evaluation Results.

Interaction Study on a Smartphone. The interaction study
was conducted on the participants’ personal Android phones
(a Google Pixel and Pixel XL). The calculator application was
designed to be as similar as possible to the desktop applica-
tion, but offloaded the classification to a networked computer.
In this interaction study, we investigated two conditions:

• Sitting:Users sat at a desk, comparing the TongueBoard
system with an external mouse attached to the phone.
This condition emulated the usage of a normal desktop
computer (with a mouse) while keeping the rest of the
experimental apparatus constant.

• Walking: Users walked up and down a hallway, com-
paring the TongueBoard system with the touchscreen.

During the walking condition, both participants reported
that the TongueBoard system allowed them to walk more
smoothly and bump into less people due to the nature of its
operation requiring less visual search and attention. While
our study design does not allow us to make claims about
comparing the mobile and stationary conditions, users re-
ported that overall they felt their performance suffered using
the touchscreen in the mobile condition, while their perfor-
mance using TongueBoard stayed consistent. One participant
added that the rhythm of his walking helped him operate
TongueBoard more consistently, both in tongue motion and

in pace. This comment might explain why the error bar is
smaller for the mobile walking condition than for the mobile
sitting condition in Figure 6.
Since the mobile application required the classification

to be made remotely, network lag contributed to the abso-
lute amount of time taken, making it difficult to compare
TongueBoard and the native modality in terms of speed.

In general, TongueBoard takes significantly more time to
enter the entire expression (Figure 8,p < 0.001). We attribute
the slower text entry speed of the system to classification
accuracy of the model rather than the interaction technique
itself. The majority of these misclassifications occur between
one or two words in the vocabulary. Although we replaced
"add" with "plus" from the previous study, Figure 7 shows that
there are still words in the vocabulary set that produce simi-
lar signals. Specifically, "7" and "9" are confused with other
two-syllable words and one-syllable words, respectively.

This confusion can be mitigated in several ways including
increasing the temporal resolution of the sampling, designing
applications to minimize the co-occurrence of conflicting
words, and adding a language or word-transition model for
free-form input.
While our live evaluation was designed to mimic free-

form text input, we find that our system is suitable as a
subtle alternative for low-bit item selection or notification
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Figure 7: Confusion Matrices by Input Mode

Figure 8: Time needed to input a single word by setting
and modality. Default refers to the pointing stick (Laptop),
mouse (Mobile Sitting), and touchscreen (Mobile Walking).

response interactions. This hypothesis is supported by our
findings in Figure 6, where for small n, our method achieves
similar speeds to that of traditional inputs. In addition, we
find that the majority of misclassifications during the live
evaluation was due to two similar words in the vocabulary
set. By using a more limited vocabulary with distinctive
words, the accuracy of the system can be further improved.

5 LIMITATIONS AND FUTUREWORK
Currently, TongueBoard is built using the CompleteSpeech
SmartPalate system, which is a commercially available palate
sensor used for speech therapy. TongueBoard relies on an ar-
ray of 124 sensors positioned at the top of the user’s mouth to
detect tongue placement using a mechanism similar to that
of orthodontic retainers. Reliable tongue placement sensing
requires that the sensor array be held steadily in place while
performing gestures and during speech. Each SmartPalate
mouthpiece is custom built to a dental impression of the
user, which makes it difficult to mass-produce and construct
generalizable models for gesture detection and silent speech
recognition. An alternative to this approach would be to

mimic the design of mouth guards used for bruxism (teeth-
grinding) treatment. These products require that users close
their mouth to hold the guard in place with their teeth; how-
ever, this action is consistent with the applications of subtle
gestures and silent speech, where minimal visible movement
is desired.

While the sensing array itself is able to fit completely and
invisibly inside the user’s mouth, the mouthpiece is wired to
an external DataLink unit that both decodes the sensor data
and powers the sensor array. In the future, low-powered or
self-powered sensing mechanisms such as piezoelectric film
and forms of wireless power transfer (i.e. inductive coupling)
can be used to remove the need for an external power source.
To enable wireless transmission of data, a low-powered BLE
(Bluetooth Low Energy) chip can be used to transmit sensor
data to an external smartphone or computer.

Furthermore, the silent speech accuracy can be improved
by using a more sophisticated recognition model. A language
model can be implemented to improve free-form text input,
and more data could be used to train a user-independent
model. Specifically, additional data collected could be used
to explore a number of implications, such as the feasibility of
performing gestures that are entirely invisible to bystanders.
From the users’ perspective, performing the gestures was
noted to be no more strenuous than normal talking. Indeed,
while collecting data to train the recognizer, the users were
asked to imagine speaking naturally while mouthing the
words. TongueBoard may in fact be less strenuous than nor-
mal talking, since it is possible to keep the jaw closed while
gesturing, requiring less muscle movement overall.
As the purpose of this study was to investigate the ac-

curacy and expressiveness afforded by sensing of tongue-
placement, these improvements that would make the system
more appropriate for real-world use were not explored.
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6 CONCLUSION
In this paper, we present TongueBoard, a tongue interface
for subtle gestures and silent speech. We use a commercially
available palate sensor intended for speech therapy and re-
purpose it to recognize a mid-sized silent speech and tongue
gesture vocabulary.

We evaluate TongueBoard in an offline study, quantifying
the classification accuracy of the system, and a live user
study, comparing the system’s input speed and accuracy
to traditional input modalities. Our results show that the
system achieves high accuracy for limited vocabulary sets
- with an overall accuracy of 84.36% and 91.01% for native
English speakers. In addition, for use cases such as subtle
input and notification response, we find that our system is
able to recognize speech from deaf users with much higher
accuracy (77.76%) when compared to existing audio-based
transcription methods.

We evaluate TongueBoard in a live user study to compare
it against traditional input modalities for stationary and mov-
ing contexts. TongueBoard achieves an average information
transfer rate of 3.78 bits per decision (number of choices
= 17, accuracy = 97.1%) and 2.18 bits per second, enabling
comparable interaction speeds to mouse and touchscreen
interfaces.

REFERENCES
[1] Toshiyuki Ando, Yuki Kubo, Buntarou Shizuki, and Shin Takahashi.

2017. CanalSense: Face-Related Movement Recognition System based
on Sensing Air Pressure in Ear Canals. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. ACM, 679–
689.

[2] Daniel Ashbrook, Patrick Baudisch, and Sean White. 2011. Nenya:
subtle and eyes-free mobile input with a magnetically-tracked finger
ring. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2043–2046.

[3] Daniel Ashbrook, Carlos Tejada, Dhwanit Mehta, Anthony Jiminez,
Goudam Muralitharam, Sangeeta Gajendra, and Ross Tallents. 2016.
Bitey: An exploration of tooth click gestures for hands-free user in-
terface control. In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and Services. ACM,
158–169.

[4] Abdelkareem Bedri, David Byrd, Peter Presti, Himanshu Sahni, Zehua
Gue, and Thad Starner. 2015. Stick it in your ear: Building an in-
ear jaw movement sensor. In Adjunct Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2015 ACM International Symposium on Wearable
Computers. ACM, 1333–1338.

[5] Abdelkareem Bedri, Richard Li, Malcolm Haynes, Raj Prateek Kosaraju,
Ishaan Grover, Temiloluwa Prioleau, Min Yan Beh, Mayank Goel, Thad
Starner, and Gregory Abowd. 2017. EarBit: using wearable sensors to
detect eating episodes in unconstrained environments. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
1, 3 (2017), 37.

[6] Abdelkareem Bedri, Himanshu Sahni, Pavleen Thukral, Thad Starner,
David Byrd, Peter Presti, Gabriel Reyes, Maysam Ghovanloo, and
Zehua Guo. 2015. Toward silent-speech control of consumer wearables.

Computer 48, 10 (2015), 54–62.
[7] Jeffrey P Bigham, Raja Kushalnagar, Ting-Hao Kenneth Huang,

Juan Pablo Flores, and Saiph Savage. 2017. On How Deaf People
Might Use Speech to Control Devices. In Proceedings of the 19th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility.
ACM, 383–384.

[8] Enrico Costanza, Alberto Perdomo, Samuel A Inverso, and Rebecca
Allen. 2004. EMG as a subtle input interface for mobile computing.
In International Conference on Mobile Human-Computer Interaction.
Springer, 426–430.

[9] Marco Cuturi. 2011. Fast global alignment kernels. In Proceedings of the
28th international conference on machine learning (ICML-11). 929–936.

[10] Bruce Denby, Thomas Schultz, Kiyoshi Honda, Thomas Hueber, Jim M
Gilbert, and Jonathan S Brumberg. 2010. Silent speech interfaces.
Speech Communication 52, 4 (2010), 270–287.

[11] João Freitas, António Teixeira, Miguel Sales Dias, and Samuel Silva.
2017. An Introduction to Silent Speech Interfaces. Springer.

[12] João Freitas, António JS Teixeira, and Miguel Sales Dias. 2014. Multi-
modal Corpora for Silent Speech Interaction.. In LREC. 4507–4511.

[13] Masaaki Fukumoto. 2018. SilentVoice: Unnoticeable Voice Input by
Ingressive Speech. In The 31st Annual ACM Symposium onUser Interface
Software and Technology. ACM, 237–246.

[14] Mayank Goel, Chen Zhao, Ruth Vinisha, and Shwetak N Patel. 2015.
Tongue-in-Cheek: Using Wireless Signals to Enable Non-Intrusive and
Flexible Facial Gestures Detection. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. ACM, 255–
258.

[15] Valentin Goverdovsky, Wilhelm von Rosenberg, Takashi Nakamura,
David Looney, David J Sharp, Christos Papavassiliou, Mary J Morrell,
and Danilo PMandic. 2017. Hearables: Multimodal physiological in-ear
sensing. Scientific reports 7, 1 (2017), 6948.

[16] Christian Holz and Edward J Wang. 2017. Glabella: Continuously
sensing blood pressure behavior using an unobtrusive wearable device.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 3 (2017), 58.

[17] Scott E Hudson, Chris Harrison, Beverly L Harrison, and Anthony
LaMarca. 2010. Whack gestures: inexact and inattentive interaction
withmobile devices. In Proceedings of the fourth international conference
on Tangible, embedded, and embodied interaction. ACM, 109–112.

[18] Yan Ji, Licheng Liu, Hongcui Wang, Zhilei Liu, Zhibin Niu, and Bruce
Denby. 2018. Updating the Silent Speech Challenge benchmark with
deep learning. Speech Communication 98 (2018), 42–50.

[19] Dimitri Kanevsky, Sagar Savla, and Thad Starner. 2018. Self-managed
Speech Therapy. Technical Disclosure Commons (August 2018).

[20] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew
Tomkins, Balint Miklos, Greg Corrado, Laszlo Lukacs, Marina Ganea,
Peter Young, et al. 2016. Smart reply: Automated response sugges-
tion for email. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 955–964.

[21] Arnav Kapur, Shreyas Kapur, and Pattie Maes. 2018. AlterEgo: A
Personalized Wearable Silent Speech Interface. In 23rd International
Conference on Intelligent User Interfaces. ACM, 43–53.

[22] Jeonghee Kim, Hangue Park, Joy Bruce, Diane Rowles, Jaimee Hol-
brook, Beatrice Nardone, Dennis P West, Anne Laumann, Elliot J Roth,
and Maysam Ghovanloo. 2016. Assessment of the tongue-drive sys-
tem using a computer, a smartphone, and a powered-wheelchair by
people with tetraplegia. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 24, 1 (2016), 68–78.

[23] Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of
Machine Learning Research 10 (2009), 1755–1758.

[24] Balz Maag, Zimu Zhou, Olga Saukh, and Lothar Thiele. 2017. BARTON:
Low Power Tongue Movement Sensing with In-ear Barometers. In

8



TongueBoard: An Oral Interface for Subtle Input AH2019, March 11–12, 2019, Reims, France

Parallel and Distributed Systems (ICPADS), 2017 IEEE 23rd International
Conference on. IEEE, 9–16.

[25] Denys JC Matthies, Bernhard A Strecker, and Bodo Urban. 2017.
Earfieldsensing: a novel in-ear electric field sensing to enrich wearable
gesture input through facial expressions. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, 1911–1922.

[26] Edward F Melcer, Michael T Astolfi, Mason Remaley, Adam Beren-
zweig, and Tudor Giurgica-Tiron. 2018. CTRL-Labs: Hand Activity
Estimation and Real-time Control from Neuromuscular Signals. In
Extended Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, D303.

[27] Geoffrey S Meltzner, James T Heaton, Yunbin Deng, Gianluca De Luca,
Serge H Roy, and Joshua C Kline. 2018. Development of sEMG sen-
sors and algorithms for silent speech recognition. Journal of neural
engineering (2018).

[28] Phuc Nguyen, Nam Bui, Anh Nguyen, Hoang Truong, Abhijit
Suresh, Matt Whitlock, Duy Pham, Thang Dinh, and Tam Vu. 2018.
TYTH-Typing On Your Teeth: Tongue-Teeth Localization for Human-
Computer Interface. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 269–
282.

[29] Simon T Perrault, Eric Lecolinet, James Eagan, and Yves Guiard. 2013.
Watchit: simple gestures and eyes-free interaction for wristwatches
and bracelets. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 1451–1460.

[30] Ming-Zher Poh, Nicholas C Swenson, and Rosalind W Picard. 2010.
Motion-tolerant magnetic earring sensor and wireless earpiece for
wearable photoplethysmography. Institute of Electrical and Electronics
Engineers.

[31] Julie Rico and Stephen Brewster. 2010. Usable gestures for mobile
interfaces: evaluating social acceptability. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 887–896.

[32] T Scott Saponas, Chris Harrison, andHrvoje Benko. 2011. PocketTouch:
through-fabric capacitive touch input. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. ACM, 303–
308.

[33] T Scott Saponas, Daniel Kelly, Babak A Parviz, and Desney S Tan. 2009.
Optically sensing tongue gestures for computer input. In Proceedings
of the 22nd annual ACM symposium on User interface software and
technology. ACM, 177–180.

[34] Jeremy Scott, David Dearman, Koji Yatani, and Khai N Truong. 2010.
Sensing foot gestures from the pocket. In Proceedings of the 23nd annual
ACM symposium on User interface software and technology. ACM, 199–
208.

[35] Brendan Shillingford, Yannis Assael, Matthew W Hoffman, Thomas
Paine, Cían Hughes, Utsav Prabhu, Hank Liao, Hasim Sak, Kanishka
Rao, Lorrayne Bennett, et al. 2018. Large-Scale Visual Speech Recog-
nition. arXiv preprint arXiv:1807.05162 (2018).

[36] Ke Sun, Chun Yu, Weinan Shi, Lan Liu, and Yuanchun Shi. 2018. Lip-
Interact: Improving Mobile Device Interaction with Silent Speech
Commands. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (UIST ’18). ACM, New York, NY,
USA, 581–593. https://doi.org/10.1145/3242587.3242599

[37] MichaelWand, Jan Koutník, and Jürgen Schmidhuber. 2016. Lipreading
with long short-term memory. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2016 IEEE International Conference on. IEEE, 6115–6119.

9

https://doi.org/10.1145/3242587.3242599

	Abstract
	1 Introduction
	2 Related Work
	Subtle Interfaces
	Silent Speech

	3 TongueBoard
	Interaction Design
	System Overview

	4 Evaluation
	User Study - Offline Accuracy
	User Study - Live Input

	5 Limitations and Future Work
	6 Conclusion
	References

