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ABSTRACT
Teleconferencing is touted to be one of the main and most
powerful uses of virtual reality (VR). While subtle facial move-
ments play a large role in human-to-human interactions, cur-
rent work in the VR space has focused on identifying discrete
emotions and expressions through coarse facial cues and ges-
tures. By tracking and representing the fluid movements of
facial elements as continuous range values, users are able to
more fully express themselves. In this work, we present Buc-
cal, a simple yet effective approach to inferring continuous
lip and jaw motions by measuring deformations of the cheeks
and temples with only 5 infrared proximity sensors embed-
ded in a mobile VR headset. The signals from these sensors
are mapped to facial movements through a regression model
trained with ground truth labels recorded from a webcam. For
a streamlined user experience, we train a user independent
model that requires no setup process. Finally, we demonstrate
the use of our technique to manipulate the lips and jaw of a
3D face model in real-time.
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INTRODUCTION
Recent developments in computer graphics and mobile hard-
ware have led VR headsets to rapidly grow in the commercial
and consumer space. However, despite the potential for what
VR spaces could do to support and enhance human-to-human
interactions, the latest VR experiences mostly isolate users
rather than connect them. While development has mostly fo-
cused on improving the graphics and display components of
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VR headsets, approaches to sensing the user’s (e)motions and
behaviors are still lacking, unable to support rich interactions.

Furthermore, many of these recent improvements require bulky
and resource-intensive hardware. Using facial gestures and
expressions for input has been previously explored, typically
using camera-based solutions. Research work has modified
off-the-shelf virtual reality enclosures with additional sensors
for the purposes of enhancing the input capabilities, typically
focused on the upper part of the face (e.g., eye tracking). For
VR headsets to ultimately become a fully mobile platform
capable of facial input, our work titled Buccal (relating to
the cheeks) demonstrates a low cost and simple yet effective
approach to tracking the continuous range of jaw motions,
with the eventual goal of supporting full facial reconstruction.

RELATED WORK

Facial Expression Detection
Facial expressions and gestures are one of the most natural
ways of communicating with other people. In some situations
(e.g., virtual reality, motor impairments, remote collaboration,
etc.), computers can assist the user in capturing facial expres-
sions as a way to mediate interactions with the digital world or
others around us. Many people with severe motor impairments
can control only a single switch, triggered by a muscle that has
some mobility (e.g., cheek twitch or eye movement) [1]. Head
tracking has been widely utilized as a way to move a cursor
and other input controls [8]. Tracking and detecting facial
expressions can provide a much more expressive method of
expressing emotional state and intent. The Kinovea software,
used in our work, has been previously used to develop a tool
for measuring and assessing the reliability of bidimensional
facial movements [2].

AffectiveWear [5] focuses on facial expression detection with
smart glasses for use in everyday life. The technique uses
infrared (IR) proximity sensors embedded in the rim of the
glasses to categorize 7 states by measuring the distance be-
tween the glasses and the person’s face. While the work con-
tributes the classification of various expressions, it does so
as a classification problem treating facial expressions as dis-
crete. Our technique uses regression to reconstruct jaw and lip
motion to capture movements in a more natural way. EarField-
Sensing [6] explored the use of various electric sensing tech-
nologies to capture facial muscle movements by placing elec-
trodes inside the ear canal. The technique was capable of
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Figure 1. Buccal is a head-mounted display (HMD) augmented with IR proximity sensors to infer jaw motions that can be reflected on a 3D face model
in order to enhance face-to-face interactions in virtual environments.

classifying over 20 facial-related gestures and required custom
earbuds. The custom hardware design enables capturing gross
head and neck movements, as well as certain facial expres-
sions, but currently blocks the ear canal, limiting any auditory
user experience.

Tracking Jaw Motion Using HMDs
Augmenting the VR enclosure with additional sensing capa-
bilities is one way to enable the capture and analysis of facial
expressions and jaw movements. Li et al. [4] attached strain
gauges all around the foam lining of an Oculus Rift head-
mounted display (HMD) to measure the deformation of the
foam when certain facial movements were performed. By
combining this technique with a depth camera attached to
the HMD and oriented at the mouth, the researchers were
able to reconstruct a 3D model of the user’s face, enabling
participants in a multi-player game to see each other’s facial
expressions. Olszewski et al. [7] also presented a method for
animating a digital avatar in real-time by instrumenting the
HMD using an RGB camera pointed at the mouth. The system
uses a deep neural net regressor on images of the mouth to
directly control the avatar. While these camera-based systems
provide high-resolution data, they do suffer from a number of
disadvantages — very fast mouth motion can lead to motion
blur, the presence of facial hair may affect capture, and the
techniques are susceptible to ambient noise producing erro-
neous results. Camera-based approaches also require greater
cost and computing power. Our technique recreates jaw mo-
tion by indirectly sensing at the cheeks and temples, using
low-cost proximity sensors and efficient regression modeling.
It supports fast mouth motion while talking and is not affected
by facial hair.

Perhaps most closely related to our work, Kawahara et al. [3]
proposes an attachment with photoreflectors on an Oculus
Rift monitoring the presence of the mouth cavity for detect-
ing mouth movements. The approach requires a mask-like
attachment covering the entire face. Suzuki et al. [9] presented
a technique for recognizing and mapping facial expressions
of VR HMD users to an avatar using embedded IR photore-
flective sensors. The technique only focused on five basic
facial expressions and required 16 IR photo reflective sensors.
The main drawback is that the system did not reproduce the

wearer’s mouth movements when speaking or moving the lips,
mainly focusing on tracking the upper part of the face and in-
ferring motions based on emotion state changes. Furthermore,
we contend that our system, which reproduces observed jaw
and lip motion by regressing with a handful of sensors inside
and around the HMD, enables more expressivity.

SYSTEM PROTOTYPE
An off-the-shelf Samsung Gear VR HMD was used as a base
physical device. Five VCNL4020 fully-integrated proximity
sensors with infrared emitters were attached to the HMD (see
Figure 1a). Two sensors were placed over the cheeks, mounted
on the bottom of the HMD with laser-cut triangle brackets.
Two more sensors were placed over the temples on the sides
of the head, attached with laser-cut hooks that fit over the strap
of the HMD. The final sensor was placed over the bridge of
the nose. The sensors are strategically positioned to directly
capture cheek motion and indirectly detect the motion of the
jaw bone from the side of the head through the temporalis
muscle. All five of these sensors were connected to a Teensy
3.2 microcontroller through a 1-to-8 I2C multiplexer. The
signals were sampled at 50 Hz by the microcontroller and
forwarded to a laptop over a USB cable for further processing.

DATA COLLECTION PROCEDURE
A user study with 6 participants (5 male, 1 female; ages 18-24)
was conducted to collect data for training and evaluating the
machine learning model. Each participant was asked to wear
the HMD while sitting in front of a laptop computer with a
webcam. A piece of square, blue masking tape was adhered to
each participant’s chin during the ground truth data collection
process in order to provide more robust tracking of the face
and headset with the webcam. Each study consisted of a
training session to become acquainted with the data collection
tool, followed by 5 recorded sessions. Offline analysis was
conducted post-hoc and participants did not receive feedback
on their performance. Between each session, the users were
asked to remove the device, walk around the room, return to
the laptop, and wear the device again. This step simulates
independent sessions and creates more variance within the
dataset.
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During each session, participants received a series of instruc-
tions displayed one at a time on the laptop screen prompting
the user to either: a) perform a jaw gesture, or b) speak a
sentence. The instructions are listed in the Appendix, along
with the number of times each instruction was to be repeated.
The gestures were designed to diversify the dataset by asking
the user to open and close their jaw at a variety of speeds. On
the other hand, the sentences were selected from "The Tortoise
and the Hare" from Aesop’s Fables to contain a variety of
rhythms (i.e., different numbers of syllables) and inflections
(i.e., statements versus questions). Each task was presented
to the participant in random order. Note that while a smiling
event was included in the original procedure, the data was not
considered in the final evaluation due to a lack of trackable
ground truth features in the video.

In each recorded session, the signals from the five sensors
were saved to the laptop, and a video of the user wearing the
HMD and performing the tasks was captured at 20 frames
per second (FPS) using the webcam. The sensor signals and
videos were ensured to be time synchronized.

Labeling the Ground Truth
To obtain the ground truth of how wide the jaw has opened,
the video data was annotated with Kinovea, a sports analysis
software that uses pattern recognition algorithms to track pres-
elected regions of interest. The paths are returned as relative
coordinates from the originally labeled region. For each video,
the chin with the blue marker, the nose (with a blue marker on
the HMD), and the two eye sockets were labeled.

To roughly find correspondence between the pixel unit move-
ments given by Kinovea and real physical units (millimeters),
the vertical distances between each eye hole of the HMD and
the nose were measured. This value was empirically deter-
mined to be 31.75 mm on the physical headset. For each video
frame, this distance was measured in pixels from each eye
hole, and then averaged to account for slight tilting of the head.
The scaling factor was then determined to be the measured
distance divided by the average. More concretely:

Scaling Factor = 31.75 mm
(∆le f t px+∆right px)/2

where ∆le f t and ∆right refer to the vertical distances between
the left and right eye holes from the nose, respectively. Finally,
for each video frame, the distance between the nose and the
chin was also measured, and this scaling factor was applied.
These values will be used in future sections as the ground truth
signal.

INFERRING JAW MOTIONS

Preprocessing and Regression
The frequency of the ground truth labels from the videos was
increased using a one dimensional linear interpolation in order
to match the frequency of the sensor signals. A first order
low-pass Butterworth filter with a cut-off frequency of 1 Hz
was used to remove the resulting noise in the signal. The same
filter was also applied to the raw sensor signals.

After the preprocessing step, both the sensor and the ground
truth signals were downsampled using a sliding window of 5

Subject 1 2 3 4 5 6

RMSE 4.026 6.412 5.314 5.342 22.729 5.328
Table 1. Average root mean squared error (RMSE) in millimeters for 6
participants.
samples, sliding by 2 samples, and averaging each window.
The downsampled signals were then used directly to train
the linear regression model. The ElasticNet linear model, as
implemented in the Scikit-learn toolkit in Python, was chosen
for its ability to make use of large numbers of samples with
a small number of features. The output of the regression
model is a prediction of how wide the mouth has opened in
millimeters, given proximity sensor data.

Evaluation Metrics
The root mean squared error (RMSE), a commonly used mea-
sure of similarity between the values predicted by a model
and the values actually observed, was used as an objective
evaluation metric. The RMSE was evaluated as follows:

RMSE =

√
∑

n
t=1(ŷt−yt )

2

n

where ŷt is the predicted value at time t and yt is the observed
value from the ground truth video at time t. In this evaluation,
the results are given as the square root of squared error in
millimeters.

RESULTS AND DISCUSSION
A user independent model was used for the evaluation. In
testing on a participant’s data, all of the data from the rest of
the participants was used to train the model, which in turn was
used to predict the test participant’s mouth openness. This
predicted result was then compared to the ground truth sig-
nal obtained from the video using RMSE. These results are
reported in Table 1.

Since RMSE does not account for the length of the sequence,
it is plausible to accumulate more error given longer sessions.
Across the thirty sessions of data from six subjects, with an av-
erage session length of 5 minutes and 39 seconds, the average
RMSE obtained was 8.192. This overall average is skewed
upward with P5 considered an outlier, and the average RMSE
without P5 is 5.285. Participant 5’s results were considerably
worse due to more significant head movement as compared to
other subjects. The participant also scratched their nose with
their hand on a few instances, momentarily obscuring part of
their face from the webcam.

Disregarding P5 as an outlier, the small variance in RMSE
scores demonstrates the robustness of our approach. While
our results were obtained in a laboratory setting, there is a
potential concern regarding ambient light interfering with the
infrared proximity sensors. However, despite phone-based
VR systems being mobile platforms, they are generally used
within a controlled environment – indoors, where there is
minimal influence from the sun’s infrared rays, and users are
generally stationary without being exposed to continuously
changing lighting conditions.

3D FACE MODEL MANIPULATION
We use the third party tool called Facade, as animating a
3D model of the face is not our core contribution. The tool
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Figure 2. Comparison of the results of the ground truth labels (top) with the output of the regression model (bottom). Units in millimeters.

can manipulate various facial features, including the angle
of the jaw’s rotation. To map the values from the distance
between the nose and the chin to an angle of the jaw, we use
the arctangent of the predicted distance value divided by an
assumed jaw length of 44 millimeters (empirically determined
during pilot testing). With a maximum distance of around 70
millimeters from the entire ground truth dataset, the possible
resulting angles fall in the range of 0 to 60 degrees. Due to the
simple nature of our system, the minimal processing overhead
(especially when compare to camera-based systems) allows
the 3D face model can be manipulated in real-time with no
visible impact on the fluidity of the 3D model’s movements.
The sensor signals from the HMD are read from the serial port,
fed into a pre-trained regression model, and converted into the
appropriate units to pass into Facade. However, due to the
smoothing applied by the sliding window, sudden movements
might be dampened.

CONCLUSION AND FUTURE WORK
The Buccal system prototype infers jaw motions in a con-
tinuous range using only 5 infrared proximity sensors in an
HMD. A user-independent model was trained using ground
truth labels from webcam videos. The inferences are used to
manipulate a 3D model to mimic the user’s jaw motions in real
time, enabling fluid interactions such as speaking. While we
were able to obtain positive results in inferring mouth opening
and closing, it seems promising that with additional work we
could capture even more motions including asymmetrical jaw
motions (e.g., crooked smiling). We plan to further this tech-
nique to track other parts of the face (e.g., eyebrows) with the
goal of reconstructing the entire face. Our system provides a
non-invasive sensing approach to animate the lower face of an
avatar and further enhance remote communication in VR.
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